Soybean (Glycine max) is an important leguminous crop that is grown throughout the United States and around the world. In 2016, soybean was valued at $41 billion USD in the United States alone. Increasingly, soybean farmers are adopting alternative management strategies to improve the sustainability and profitability of their crop. Various benefits have been demonstrated for alternative management systems, but their effects on soybean-associated microbial communities are not well-understood. In order to better understand the impact of crop management systems on the soybean-associated microbiome, we employed DNA amplicon sequencing of the Internal Transcribed Spacer (ITS) region and 16S rRNA genes to analyze fungal and prokaryotic communities associated with soil, roots, stems, and leaves. Soybean plants were sampled from replicated fields under long-term conventional, no-till, and organic management systems at three time points throughout the growing season. Results indicated that sample origin was the main driver of beta diversity in soybean-associated microbial communities, but management regime and plant growth stage were also significant factors. Similarly, differences in alpha diversity are driven by compartment and sample origin. Overall, the organic management system had lower fungal and bacterial Shannon diversity. In prokaryotic communities, aboveground tissues were dominated by Sphingomonas and Methylobacterium while belowground samples were dominated by Bradyrhizobium and Sphingomonas. Aboveground fungal communities were dominated by Davidiella across all management systems, while belowground samples were dominated by Fusarium and Mortierella. Specific taxa including potential plant beneficials such as Mortierella were indicator species of the conventional and organic management systems. No-till management increased the abundance of groups known to contain plant beneficial organisms such as Bradyrhizobium and Glomeromycotina. Network analyses show different highly connected hub taxa were present in each management system. Overall, this research demonstrates how specific long-term cropping management systems alter microbial communities and how those communities change throughout the growth of soybean.
Fungicides reduce fungal pathogen populations and are essential to food security. Understanding the impacts of fungicides on crop microbiomes is vital to minimizing unintended consequences while maintaining their use for plant protection. However, fungicide disturbance of plant microbiomes has received limited attention, and has not been examined in different agricultural management systems. We used amplicon sequencing of fungi and prokaryotes in maize and soybean microbiomes before and after foliar fungicide application in leaves and roots from plots under long-term no-till and conventional tillage management. We examined fungicide disturbance and resilience, which revealed consistent non-target effects and greater resiliency under no-till management. Fungicides lowered pathogen abundance in maize and soybean and decreased the abundance of Tremellomycetes yeasts, especially Bulleribasidiaceae, including core microbiome members. Fungicide application reduced network complexity in the soybean phyllosphere, which revealed altered co-occurrence patterns between yeast species of Bulleribasidiaceae, and Sphingomonas and Hymenobacter in fungicide treated plots. Results indicate that foliar fungicides lower pathogen and non-target fungal abundance and may impact prokaryotes indirectly. Treatment effects were confined to the phyllosphere and did not impact belowground microbial communities. Overall, these results demonstrate the resilience of no-till management to fungicide disturbance, a potential novel ecosystem service provided by no-till agriculture.
Tar spot is a fungal disease complex of corn that has been destructive and yield limiting in Central and South America for nearly 50 years. Phyllachora maydis, the causal agent of tar spot, is an emerging corn pathogen in the United States, first reported in 2015 from major corn producing regions of the country. The tar spot disease complex putatively includes Monographella maydis (syn. Microdochium maydis), which increases disease damage through the development of necrotic halos surrounding tar spot lesions. These necrotic halos, termed “fish-eye” symptoms, have been identified in the United States, though Monographella maydis has not yet been confirmed. A recent surge in disease severity and loss of yield attributed to tar spot in the United States has led to increased attention and expanded efforts to understand the disease complex and how to manage it. In this study, next-generation sequencing of the internal transcribed spacer-1 (ITS1) ribosomal DNA was used to identify fungal taxa that distinguish tar spot infections with or without fish-eye symptoms. Fungal communities within tar spot only lesions were significantly different from communities having fish-eye symptoms. Two low abundance OTUs were identified as Microdochium sp., however, neither were associated with fish-eye symptom development. Interestingly, a single OTU was found to be significantly more abundant in fish-eye lesions compared to tar spot lesions and had a 91% ITS1 identity to Neottiosporina paspali. In addition, the occurrence of this OTU was positively associated with Phyllachora maydis fish-eye symptom networks, but not in tar spot symptom networks. Neottiosporina paspali has been reported to cause necrotic lesions on various monocot grasses. Whether the related fungus we detected is part of the tar-spot complex of corn and responsible for fish-eye lesions remains to be tested. Alternatively, many OTUs identified as Phyllachora maydis, suggesting that different isolate genotypes may be capable of causing both tar spot and fish-eye symptoms, independent of other fungi. We conclude that Monographella maydis is not required for fish-eye symptoms in tar spot of corn.
Corn is a staple feed and biofuel crop with a value close to $3.7 billion dollars for Michigan’s economy. Knowledge about distribution and abundance of seedling pathogens in Michigan corn fields is limited. Here we used a combination of culture-based and next-generation sequencing of soil samples to determine the extent of species associated with diseased corn seedlings and those present in soil. Over 2 years, symptomatic seedlings and associated soil samples were collected from 11 Michigan fields. A total of 170 oomycete cultures were obtained from seedlings using a semiselective medium (CMA-PARPB) and identified using the internal transcribed spacer region. Thirty-three species were isolated, with Pythium inflatum (25%; clade B) and P. sylvaticum (12%; clade F) being the most abundant species. For the amplicon-based approach, the cytochrome oxidase subunit I marker (COI) mitochondrial region was amplified from soil samples and sequenced using Illumina MiSeq. The dominant Pythium clades present in the soil were F, I, D, and B and accounted for at least 75% of the abundance in all locations. Pythium clades F, I, and D were recovered with similar trends with the culture and amplicon approach; however, clade B was highly abundant in plant isolation, but not in soil. The 20 most abundant species were characterized for pathogenicity and fungicide sensitivity. P. irregulare and P. ultimum var. ultimum were the most virulent at both 15 and 20°C. Isolates were tested for their sensitivity to mefenoxam and ethaboxam. Most isolates were sensitive to both chemistries, but P. rostratifingens and P. aff. torulosum were less sensitive to ethaboxam and P. ultimum var. ultimum less sensitive to mefenoxam. The survey and isolate characterization provides a better understanding of seedling and root rot disease of corn and opportunities to improve management of this disease complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.