In this study, we extend previous work on iron deficiency and dopamine (DA) transporters to include an examination of central serotonin (5-HT) and noradrenergic (NE) transporters. Rats were fed either iron deficient (ID) or iron adequate (CN) diets from weaning until adulthood. In males, an additional group of iron deficient animals (IR) were given iron supplementation. DA, 5-HT, and NE transporter binding was done in situ on thin sections. ID males, but not females, decreased DA transporter binding in the nucleus accumbens, caudate putamen and substantia nigra by 20-40%. ID males also had a 20-30% reduction in 5-HT transporter binding in several areas (nucleus accumbens, olfactory tubercle, colliculus) while in ID females there was 15-25% increased serotonin transporter binding in the olfactory tubercle, zona incerta, anteroventral thalamic nucleus and vestibular nucleus. Iron deficiency reduced 3H-nisoxetine binding to the NE transporter in locus ceruleus and anteroventral thalamic nucleus in males but not females. Only some of the changes observed in DA, serotonin and NE transporter binding were reversible by iron supplementation. These findings show that iron deficiency affects monoamine systems related to homeostasis and in most cases males appear to be more vulnerable than females.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.