Biogas production and wastewater quality from anaerobic digesters were studied to determine whether sound at sonic frequencies (< 20,000 Hz) could enhance their performance. In three trials with increasing waste loading rates, each of 100-day duration, the performance of control and sound-treated digesters was compared. Anaerobic digesters exposed to sound produced approximately 12% more biogas than did non-exposed digesters, and sound-treated digestate had significantly lower chemical oxygen demand. Sludge at the end of the 100-day digestion averaged 19% less carbon and 18% less nitrogen in sound-treated digesters as compared to sludge from untreated digesters. Although the mechanism(s) responsible for enhanced biogas production due to sound exposure are unknown, recordings of sound-treated digesters indicate that acoustically induced cavitation may play a role.
Microaeration, wherein small amounts of air are introduced into otherwise anaerobic digesters, has been shown to enhance biogas production. This occurs by fostering the growth of facultatively aerobic bacteria and production of enzymes that enhance the degradation of complex polymers such as cellulose. The treatment of anaerobic digestate with sound at sonic frequencies (<20 kHz) has also been shown to improve biogas production. Microaeration at a rate of 800 mL day−1, treatment with a 1000-Hz sine wave, and combined microaeration/sound were compared to a control digester for the production of biogas and their effect on wastewater quality. Poultry litter from a facility using wood chips as bedding was used as feed. The initial feeding rate was 400 g week−1, and this was slowly increased to a final rate of 2400 g week−1. Compared to the control, sound treatment, aeration, and combined sound/aeration produced 17%, 32%, and 28% more biogas. The aeration alone treatment may have been more effective than combined aeration/sound due to the sound interfering with retention of aeration or the formation of free radicals during cavitation. Digesters treated with sound had the highest concentrations of suspended solids, likely due to cavitation occurring within the sludge and the resulting suspension of fine particles by bubbles.
We introduce a new type of online instructional design, online learning modules, that effectively allows instructors to conduct pre-and post-testing on the scale of every 20-30 minutes. This paper will focus on estimating students' test-taking effort on the pre-test by analyzing their response time using a multicomponent mixture model. In a study involving four online learning modules on mechanical energy, we found that only a small fraction of students display low test-taking effort on the pre-tests. We also show that data from frequent pre-and post-test can provide useful information regarding the instructional effectiveness of the learning materials in each OLM.
An increase in the number of independent breweries and distilleries has led to an increase in the amount of spent grains with inadequate means of disposal. One option for disposal is as feedstock for anaerobic digestion if digester stability is ensured. In this study, brewers’ spent grain and distillers’ spent grain were used as substrate for anaerobic digestion for 32 weeks. The digestate was treated by recirculation through a silicone hose located in an external tank filled with saline solution. The hose served as a permeable membrane allowing for the passage of gases. The recirculation tanks were fitted with check valves to maintain three pressure/gas regimes: 26 mm Hg N2, 26 mm Hg aeration or 100 mm Hg aeration. A fourth digester was operated with no recirculation as the control. These treatments were chosen to determine if differences in digester stability, wastewater treatment efficiency, and biogas production could be detected. A combination of dairy and swine manure was used as seeding to provide a methanogenic consortium and bicarbonate buffering. However, despite trying to provide for adequate initial bicarbonate buffering, all four digesters had low initial buffering and consequently low pH as short-chain fatty acids accumulated. After six weeks, bicarbonate buffering and pH increased as methane production increased, and short-chain fatty acids decreased. Later, despite the fluxes of O2 and N2 across the silicone membrane being very low, differences between the various treatments were noted. The pH of the digestate treated by N2 recirculation was lower than the other digesters and decreased further after distillers’ spent grain was substituted for brewers’ spent grain. Aeration at a pressure of 26 mm Hg and 100 mg Hg increased biogas production compared to other treatments but only significantly so at 100 mm Hg. These results suggest that partial purging of dissolved gases in anaerobic digestate by the small fluxes of N2 or O2 across a permeable membrane may affect digester performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.