A variety of lesions occur in the pediatric salivary glands. With modern imaging techniques such as Doppler sonography, helical CT, and MRI, identification of a specific etiology is often possible. Knowledge of clinical information, normal anatomy, and imaging characteristics of salivary gland pathology are essential for appropriate radiologic evaluation. This review illustrates the various congenital, neoplastic, and inflammatory entities that can occur within the parotid, submandibular, and sublingual spaces.
The rationale and objectives were to define the MRI tumor-characterizing potential of a new protein-avid contrast agent, Gd-GlyMe-DOTA-perfluorooctyl-mannose-conjugate (Gadofluorine M; Schering AG, Berlin, Germany) in a chemically induced tumor model of varying malignancy. Because of the tendency for this agent to form large micelles in water and to bind strongly to hydrophobic sites on proteins, it was hypothesized that patterns of dynamic tumor enhancement could be used to differentiate benign from malignant lesions, to grade the severity of malignancies and to define areas of tumor necrosis. Gadofluorine M, 0.05 mmol Gd kg(-1), was administered intravenously to 28 anesthetized rats that had developed over 10 months mammary tumors of varying degrees of malignancy as a consequence of intraperitoneal administration of N-ethyl-N-nitrosourea (ENU), 45-250 mg kg(-1). These tumors ranged histologically from benign fibroadenomas to highly undifferentiated adenocarcinomas. Dynamic enhancement data were analyzed kinetically using a two-compartment tumor model to generate estimates of fractional plasma volume (fPV), apparent fractional extracellular volume (fEV*) and an endothelial transfer coefficient (K(PS)) for this contrast agent. Tumors were examined microscopically for tumor type, degree of malignancy (Scarff-Bloom-Richardson score) and location of necrosis. Eighteen tumor-bearing rats were successfully imaged. MRI data showed an immediate strong and gradually increasing tumor enhancement. K(PS) and fEV*, but not fPV obtained from tumors correlated significantly (p < 0.05) with the SBR tumor grade, r = 0.65 and 0.56, respectively. Estimates for K(PS) and fEV* but not fPV were significantly lower in a group consisting of benign and low-grade malignant tumors compared with the group of less-differentiated high-grade tumors (1.61 +/- 0.64 vs 3.37 +/- 1.49, p < 0.01; 0.45 +/- 0.17 vs 0.78 +/- 0.24, p < 0.01; and 0.076 +/- 0.048 vs 0.121 +/- 0.088, p = 0.24, respectively). It is concluded that the protein-avid MRI contrast agent Gadofluorine M enhances tumors of varying malignancy depending on the tumor grade, higher contrast agent accumulation for more malignant lesions. The results show potential utility for differentiating benign and low-grade malignant lesions from high-grade cancers.
Intrafraction motion (i.e., motion occurring during a treatment session) can play a pivotal role in the success of abdominal and thoracic radiation therapy. Hybrid magnetic resonance-guided radiotherapy systems have the potential to control for intrafraction motion. Recently, we introduced an MRI sequence capable of acquiring real-time cine imaging in two orthogonal planes (SOPI). We extend SOPI here to permit dynamic updating of slice positions in one plane while keeping the other plane position fixed. In this implementation, cine images from the static plane are used for motion monitoring and as image navigators to sort stepped images in the other plane, producing dynamic 4D image volumes for use in dose reconstruction. A custom 3D-printed target, designed to mimic the pancreas and duodenum and filled with radiochromic FXG gel, was interfaced to the dynamic motion phantom. 4D-SOPI was acquired in a dynamic motion phantom driven by an actual patient respiratory waveform displaying amplitude/frequency variations and drifting and in a healthy volunteer. Unique 4D-MRI epochs were reconstructed from a time series of phantom motion. Dose from a static 4cmx15cm field was calculated on each 4D respiratory phase bin and epoch image, scaled by the time spent in each bin, and then rigidly accumulated. The phantom was then positioned on an Elekta MR Linac and irradiated while moving. Following irradiation, actual dose deposited to the FXG gel was determined by applying a R1 versus dose calibration curve to R1 maps of the phantom. The 4D-SOPI cine images produced a respiratory motion navigator that was highly correlated with the actual phantom motion (CC=0.9981). The mean difference between the accumulated and measured dose inside the target was 4.4% of the maximum prescribed dose. These results provide early validation that 4D-SOPI simultaneously enables real-time motion monitoring and truth-in-delivery analysis for integrated MRguided radiation therapy (MR-gRT) systems.
Raccoon roundworm encephalitis is a rare but devastating infection characterized by progressive neurological decline despite attempted therapy. Patients present with deteriorating neurological function, eosinophilia, and history of pica or geophagia resulting in ingestion of the parasite. Neuroimaging studies demonstrate nonspecific findings of progressive white matter inflammation and cortical atrophy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.