BackgroundIntermittent delivery of piped water can lead to waterborne illness through contamination in the pipelines or during household storage, use of unsafe water sources during intermittencies, and limited water availability for hygiene. We assessed the association between continuous versus intermittent water supply and waterborne diseases, child mortality, and weight for age in Hubli-Dharwad, India.Methods and FindingsWe conducted a matched cohort study with multivariate matching to identify intermittent and continuous supply areas with comparable characteristics in Hubli-Dharwad. We followed 3,922 households in 16 neighborhoods with children <5 y old, with four longitudinal visits over 15 mo (Nov 2010–Feb 2012) to record caregiver-reported health outcomes (diarrhea, highly credible gastrointestinal illness, bloody diarrhea, typhoid fever, cholera, hepatitis, and deaths of children <2 y old) and, at the final visit, to measure weight for age for children <5 y old. We also collected caregiver-reported data on negative control outcomes (cough/cold and scrapes/bruises) to assess potential bias from residual confounding or differential measurement error.Continuous supply had no significant overall association with diarrhea (prevalence ratio [PR] = 0.93, 95% confidence interval [CI]: 0.83–1.04, p = 0.19), bloody diarrhea (PR = 0.78, 95% CI: 0.60–1.01, p = 0.06), or weight-for-age z-scores (Δz = 0.01, 95% CI: −0.07–0.09, p = 0.79) in children <5 y old. In prespecified subgroup analyses by socioeconomic status, children <5 y old in lower-income continuous supply households had 37% lower prevalence of bloody diarrhea (PR = 0.63, 95% CI: 0.46–0.87, p-value for interaction = 0.03) than lower-income intermittent supply households; in higher-income households, there was no significant association between continuous versus intermittent supply and child diarrheal illnesses. Continuous supply areas also had 42% fewer households with ≥1 reported case of typhoid fever (cumulative incidence ratio [CIR] = 0.58, 95% CI: 0.41–0.78, p = 0.001) than intermittent supply areas. There was no significant association with hepatitis, cholera, or mortality of children <2 y old; however, our results were indicative of lower mortality of children <2 y old (CIR = 0.51, 95% CI: 0.22–1.07, p = 0.10) in continuous supply areas. The major limitations of our study were the potential for unmeasured confounding given the observational design and measurement bias from differential reporting of health symptoms given the nonblinded treatment. However, there was no significant difference in the prevalence of the negative control outcomes between study groups that would suggest undetected confounding or measurement bias.ConclusionsContinuous water supply had no significant overall association with diarrheal disease or ponderal growth in children <5 y old in Hubli-Dharwad; this might be due to point-of-use water contamination from continuing household storage and exposure to diarrheagenic pathogens through nonwaterborne routes. Continuous supply was ass...
Well into the 21st century, safe and affordable drinking water remains an unmet human need. At least 1.8 billion people are potentially exposed to microbial contamination, and close to 140 million people are potentially exposed to unsafe levels of arsenic. Many new technologies, water quality assessments, health impact assessments, cost studies, and user preference studies have emerged in the past 20 years to further the laudable goal of safe drinking water for all. This article reviews (a) the current literature on safe water approaches with respect to their effectiveness in improving water quality and protectiveness in improving human health, (b) new work on the uptake and use of safe water systems among low-income consumers, (c) new research on the cash and labor costs of safe water systems, and (d) research on user preferences and valuations for safe water. Our main recommendation is that safe water from "source to sip" should be seen as a system; this entire system, rather than a discrete intervention, should be the object of analysis for technical, economic, and health assessments.
While efforts are underway to expand latrine coverage to an estimated 2.6 billion people who lack access to improved sanitation, there is evidence that actual use of latrines is suboptimal, limiting the potential health and environmental gains from containment of human excreta. We developed a passive latrine use monitor (PLUM) and compared its ability to measure latrine activity with structured observation. Each PLUM consisted of a passive infrared motion detector, microcontroller, data storage card, and batteries mounted in a small plastic housing that was positioned inside the latrine. During a field trial in Orissa, India, with ∼115 households, the number of latrine events measured by the PLUMs was in good agreement with that measured by trained observers during 5 h of structured observation per device per week. A significant finding was that the presence of a human observer was associated with a statistically significant increase in the number of latrine events, i.e., the users modified their behavior in response to the observer. Another advantage of the PLUM was the ability to measure activity continuously for an entire week. A shortcoming of the PLUM was the inability to separate latrine events that occurred in immediate succession, leading to possible undercounting during high-traffic periods. The PLUM is a promising technology that can provide detailed measures of latrine use to improve the understanding of sanitation behaviors and how to modify them and for assessing the intended health, livelihood, and environmental benefits of improved sanitation.
Keywords:Tanzania Water and health Household water treatment and safe storage Point of use Boiling User preferences Willingness to pay a b s t r a c t Almost half of all deaths from drinking microbiologically unsafe water occur in Sub-Saharan Africa. Household water treatment and safe storage (HWTS) systems, when consistently used, can provide safer drinking water and improve health. Social marketing to increase adoption and use of HWTS depends both on the prices of and preferences for these systems. This study included 556 households from rural Tanzania across two low-income districts with low-quality water sources. Over 9 months in 2012 and 2013, we experimentally evaluated consumer preferences for six "low-cost" HWTS options, including boiling, through an ordinal ranking protocol. We estimated consumers' willingness to pay (WTP) for these options, using a modified auction. We allowed respondents to pay for the durable HWTS systems with cash, chickens or mobile money; a significant minority chose chickens as payment. Overall, our participants favored boiling, the ceramic pot filter and, where water was turbid, PuR™ (a combined flocculant-disinfectant). The revealed WTP for all products was far below retail prices, indicating that significant scale-up may need significant subsidies. Our work will inform programs and policies aimed at scaling up HWTS to improve the health of resource-constrained communities that must rely on poorquality, and sometimes turbid, drinking water sources.
Kigali, Rwanda lacks a centralized sewer system, which leaves residents to choose between on-site options; the majority of residents in informal settlements use pit latrines as their primary form of sanitation. When their pits fill, the pits are either sealed, or emptied; emptying is often done by hand and then dumped in the environment, putting the residents and the broader population at risk of infectious disease outbreaks. In this paper, we used revealed and stated preference models to: (1) estimate the demand curve for improved emptying services; and, (2) evaluate household preferences and the willingness to pay (WTP) for different attributes of improved emptying services. We also quantify the costs of improved service delivery at different scales of production. The study included 1167 households from Kigali, Rwanda across 30 geographic clusters. Our results show that, at a price of US$79 per pit, 15% of all the pits would be emptied by improved emptying services, roughly the current rate of manual emptying. Grouping empties by neighborhood and ensuring that each truck services an average of four households per day could reduce the production costs to US$44 per empty, ensuring full cost coverage at that price. At a lower price of US$24, we estimate that the sealing of pits might be fully eliminated, with full coverage of improved emptying services for all pits; this would require a relatively small subsidy of US$20 per empty. Our results show that households had strong preferences for fecal sludge (FS) treatment, formalized services (which include worker protections), and distant disposal. The results from the study indicate a few key policies and operational strategies that can be used for maximizing the inclusion of low-income households in safely managed sanitation services, while also incorporating household preferences and participation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.