Background This investigation examined the mechanisms by which coronary perivascular adipose tissue (PVAT)-derived factors influence vasomotor tone and the PVAT proteome in lean vs. obese swine. Methods and Results Coronary arteries from Ossabaw swine were isolated for isometric tension studies. We found that coronary (P=0.03) and mesenteric (P=0.04), but not subcutaneous adipose tissue, augmented coronary contractions to KCl (20 mM). Inhibition of CaV1.2 channels with nifedipine (0.1 μM) or diltiazem (10 μM) abolished this effect. Coronary PVAT increased baseline tension and potentiated constriction of isolated arteries to PGF2α in proportion to the amount of PVAT present (0.1–1.0 g). These effects were elevated in tissues obtained from obese swine and were observed in intact and endothelium denuded arteries. Coronary PVAT also diminished H2O2-mediated vasodilation in lean, and to a lesser extent in obese arteries. These effects were associated with alterations in the obese coronary PVAT proteome (detected 186 alterations) and elevated voltage-dependent increases in intracellular [Ca2+] in obese smooth muscle cells. Further studies revealed that a Rho-kinase inhibitor fasudil (1 μM) significantly blunted artery contractions to KCl and PVAT in lean, but not obese swine. Calpastatin (10 μM) also augmented contractions to levels similar to that observed in the presence of PVAT. Conclusions Vascular effects of PVAT vary according to anatomic location and are influenced by an obese phenotype. Augmented contractile effects of obese coronary PVAT are related to alterations in the PVAT proteome (e.g. calpastatin), Rho-dependent signaling, and the functional contribution of K+ and CaV1.2 channels to smooth muscle tone.
This study was designed to elucidate the contribution of adenosine A 2A and A 2B receptors to coronary reactive hyperemia and downstream K + channels involved. Coronary blood flow was measured in open-chest anesthetized dogs. Adenosine dose-dependently increased coronary flow from 0.72 ± 0.1 to 2.6 ± 0.5 ml/min/g under control conditions. Inhibition of A 2A receptors with SCH58261 (1 μM) attenuated adenosine-induced dilation by ~50%, while combined administration with the A 2B receptor antagonist alloxazine (3 μM) produced no additional effect. SCH58261 significantly reduced reactive hyperemia in response to a transient 15 sec occlusion; debt/repayment ratio decreased from 343 ± 63 to 232 ± 44%. Alloxazine alone attenuated adenosine-induced increases in coronary blood flow ~30% but failed to alter reactive hyperemia. A 2A receptor agonist CGS21680 (10 μg bolus) increased coronary blood flow by 3.08 ± 0.31 ml/ min/g. This dilator response was attenuated to 0.76 ± 0.14 ml/min/g by inhibition of K v channels with 4-aminopyridine (0.3 mM) and to 0.11 ± 0.31 ml/min/g by inhibition of K ATP channels with glibenclamide (3 mg/kg). Combined administration abolished vasodilation to CGS21680. These data indicate that A 2A receptors contribute to coronary vasodilation in response to cardiac ischemia via activation of K V and K ATP channels.
The purpose of this investigation was to test the hypothesis that KV channels contribute to metabolic control of coronary blood flow and that decreases in KV channel function and/or expression significantly attenuate myocardial oxygen supply-demand balance in the metabolic syndrome (MetS). Experiments were conducted in conscious, chronically instrumented Ossabaw swine fed either a normal maintenance diet or an excess calorie atherogenic diet that produces the clinical phenotype of early MetS. Data were obtained under resting conditions and during graded treadmill exercise before and after inhibition of KV channels with 4-aminopyridine (4-AP, 0.3 mg/kg, i.v.). In lean-control swine, 4-AP reduced coronary blood flow ~15% at rest and ~20% during exercise. Inhibition of KV channels also increased aortic pressure (P < 0.01) while reducing coronary venous Po2 (P < 0.01) at a given level of myocardial oxygen consumption (MVo2). Administration of 4-AP had no effect on coronary blood flow, aortic pressure, or coronary venous Po2 in swine with MetS. The lack of response to 4-AP in MetS swine was associated with a ~20% reduction in coronary KV current (P < 0.01) and decreased expression of KV1.5 channels in coronary arteries (P < 0.01). Together, these data demonstrate that KV channels play an important role in balancing myocardial oxygen delivery with metabolism at rest and during exercise-induced increases in MVo2. Our findings also indicate that decreases in KV channel current and expression contribute to impaired control of coronary blood flow in the MetS.
Previous studies from our laboratory showed that coronary arterioles from type 2 diabetic mice undergo inward hypertrophic remodeling and reduced stiffness. The aim of the current study was to determine if coronary resistance microvessels (CRMs) in Ossabaw swine with metabolic syndrome (MetS) undergo remodeling distinct from coronary conduit arteries. Male Ossabaw swine were fed normal (n = 7, Lean) or hypercaloric high-fat (n = 7, MetS) diets for 6 mo, and then CRMs were isolated and mounted on a pressure myograph. CRMs isolated from MetS swine exhibited decreased luminal diameters (126 ± 5 and 105 ± 9 μm in Lean and MetS, respectively, P < 0.05) with thicker walls (18 ± 3 and 31 ± 3 μm in Lean and MetS, respectively, P < 0.05), which doubled the wall-to-lumen ratio (14 ± 2 and 30 ± 2 in Lean and MetS, respectively, P < 0.01). Incremental modulus of elasticity (IME) and beta stiffness index (BSI) were reduced in CRMs isolated from MetS pigs (IME: 3.6 × 10(6) ± 0.7 × 10(6) and 1.1 × 10(6) ± 0.2 × 10(6) dyn/cm(2) in Lean and MetS, respectively, P < 0.001; BSI: 10.3 ± 0.4 and 7.3 ± 1.8 in Lean and MetS, respectively, P < 0.001). BSI in the left anterior descending coronary artery was augmented in pigs with MetS. Structural changes were associated with capillary rarefaction, decreased hyperemic-to-basal coronary flow velocity ratio, and augmented myogenic tone. MetS CRMs showed a reduced collagen-to-elastin ratio, while immunostaining for the receptor for advanced glycation end products was selectively increased in the left anterior descending coronary artery. These data suggest that MetS causes hypertrophic inward remodeling of CRMs and capillary rarefaction, which contribute to decreased coronary flow and myocardial ischemia. Moreover, our data demonstrate novel differential remodeling between coronary micro- and macrovessels in a clinically relevant model of MetS.
Metabolic syndrome (MetS) is a collection of risk factors including obesity, dyslipidemia, insulin resistance/impaired glucose tolerance, and/or hypertension. The incidence of obesity has reached pandemic levels, as ~20–30% of adults in most developed countries can be classified as having MetS. This increased prevalence of MetS is critical as it is associated with a two-fold elevated risk for cardiovascular disease. Although the pathophysiology underlying this increase in disease has not been clearly defined, recent evidence indicates that alterations in the control of coronary blood flow could play an important role. The purpose of this review is to highlight current understanding of the effects of MetS on regulation of coronary blood flow and to outline the potential mechanisms involved. In particular, the role of neurohumoral modulation via sympathetic α-adrenoceptors and the renin-angiotensin-aldosterone system (RAAS) are explored. Alterations in the contribution of end-effector K+, Ca2+, and transient receptor potential (TRP) channels are also addressed. Finally, future perspectives and potential therapeutic targeting of the microcirculation in MetS are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.