Host pattern recognition receptors (PRRs) are crucial for sensing pathogenic microorganisms, initiating innate responses, and modulating pathogen-specific adaptive immunity during infection. Rickettsia spp., Orientia tsutsugamushi, Anaplasma spp., Ehrlichia spp., and Coxiella burnetii are obligate intracellular bacteria that can replicate only within host cells and must evade immune detection to successfully propagate. These five bacterial species are zoonotic pathogens of clinical or agricultural importance, yet uncovering how immune recognition occurs has remained challenging. Recent evidence from in vitro studies and animal models has yielded new insights into the types and kinetics of PRR activation during infection with Rickettsia spp., A. phagocytophilum, E. chaffeensis, and C. burnetii. However, much less was known about PRR activation in O. tsutsugamushi infection until the recent discovery of the role of the C-type lectin receptor Mincle during lethal infection in mice and in primary macrophage cultures. This review provides a brief summary of the clinical and epidemiologic features of these five bacterial infections, with a focus on the fundamental biologic facets of infection, and recent advances in host recognition. In addition, knowledge gaps regarding the innate recognition of these bacteria in the context of disease pathogenesis are discussed.
A novel copper(II) metal–organic framework (MOF) has been synthesized by modifying the reaction conditions of a 1D coordination polymer. The 1D polymer is built by the coordination between copper and 2,2′-(1H-imidazole-4,5-diyl)di-1,4,5,6-tetrahydropyrimidine (H-L1). The geometry of H-L1 precludes its ability to form extended 3D framework structures. By adding 1,4-benzenedicarboxylic acid (H2BDC), a well-studied linker in MOF synthesis, we achieved the transition from a 1D polymer chain into porous 2D layered structures. Hydrogen bonding between L1 and BDC directs the parallel stacking of these layers, resulting in a 3D structure with one-dimensional channels accessible by two different pore windows. The preferred growth orientation of the crystal produces prolonged channels and a disparity in pore size distribution. This in turn results in slow diffusion processes in the material. Furthermore, an isoreticular MOF was prepared by substituting the BDC linker by 2,6-naphthalenedicarboxylic acid (H2NDC).
Orientia tsutsugamushi is an obligately intracellular bacterium and an etiological agent of scrub typhus. Human studies and animal models of scrub typhus have shown robust type 1-skewed proinflammatory responses during severe infection. Macrophages (MΦ) play a critical role in initiating such responses, yet mechanisms of innate recognition for O. tsutsugamushi remain unclear. In this study, we investigated whether Syk-dependent C-type lectin receptors (CLRs) contribute to innate immune recognition and the generation of proinflammatory responses. To validate the role of CLRs in scrub typhus, we infected murine bone marrow-derived MΦ with O. tsutsugamushi in the presence of selective Syk inhibitors and analyzed a panel of CLRs and proinflammatory markers via qRT-PCR. We found that Mincle/Clec4a and Clec5a transcription was significantly abrogated upon Syk inhibition at 6 h of infection. The effect of Syk inhibition on Mincle protein expression was validated via Western blot. Syk-inhibited MΦ had diminished expression of type 1 cytokines/chemokines (Il12p40, Tnf, Il27p28, Cxcl1) during infection. Additionally, expression of innate immune cytosolic sensors (Mx1 and Oas1-3) was highly induced in the brain of lethally infected mice. We established that Mx1 and Oas1 expression was reduced in Syk-inhibited MΦ, while Oas2, Oas3, and MerTK were not sensitive to Syk inhibition. This study reveals that Syk-dependent CLRs contribute to inflammatory responses against O. tsutsugamushi. It also provides the first evidence for Syk-dependent activation of intracellular defenses during infection, suggesting a role of pattern recognition receptor crosstalk in orchestrating macrophage-mediated responses to this poorly studied bacterium.
Orientia tsutsugamushi is an obligately intracellular bacterium and the etiological agent of scrub typhus. Human studies and animal models of scrub typhus have shown robust type 1-skewed proinflammatory responses during severe infection. Macrophages (Mφ) play a critical role in initiating such responses, yet mechanisms of innate recognition for O. tsutsugamushi remain unclear. In this study, we investigated whether Syk-dependent C-type lectin receptors (CLRs) contribute to innate immune recognition and the generation of proinflammatory responses. To validate a role of CLRs in scrub typhus, we infected murine bone marrow-derived (Mφ) with O. tsutsugamushi in the presence of selective Syk inhibitors and analysed a panel of CLRs and proinflammatory markers via qRT-PCR. We found that Mincle/Clec4a and Clec5a transcription was significantly abrogated upon Syk inhibition at 6 hours of infection. The effect of Syk inhibition on Mincle protein expression was validated via western blot. Syk-inhibited Mφ had diminished expression of type 1 cytokines/chemokines (Il12p40, Tnf, Il27p28, Cxcl1) during infection. Additionally, expression of innate immune cytosolic sensors (Mx1 and Oas1-3) was highly induced in the brain of lethally infected mice. We established that Mx1 and Oas1 expression was reduced in Syk-inhibited M, while Oas2, Oas3, and MerTK were not sensitive to Syk inhibition. This study reveals that Syk-dependent CLRs contribute to inflammatory responses to O. tsutsugamushi. It also provides the first evidence for Syk-dependent activation of intracellular defenses during infection, suggesting a role of pattern recognition receptor crosstalk in orchestrating macrophage-mediated responses to this poorly studied bacterium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.