Target-based drug discovery for Alzheimer's disease (AD) centered on modulation of the amyloid ß peptide has met with limited success. Therefore, recent efforts have focused on targeting the microtubule-associated protein tau. Tau pathologically accumulates in more than 15 neurodegenerative diseases and is most closely linked with post-symptomatic progression in AD. We endeavored to identify compounds that decrease tau stability rather than prevent its aggregation. An extract from Myrica cerifera (bayberry/southern wax myrtle) potently reduced both endogenous and over-expressed tau protein levels in cells and murine brain slices. The bayberry flavonoids myricetin and myricitrin were confirmed to contribute to this potency but a diarylheptanoid, myricanol, was the most effective anti-tau component in the extract with potency approaching the best targeted lead therapies. (+)-aR,11S-myricanol, isolated from M. cerifera and reported here for the first time as the naturally occurring aglycone, was significantly more potent than commercially available (±)-myricanol. Myricanol may represent a novel scaffold for drug development efforts targeting tau turnover in AD.
The Hsp90-associated cis-trans peptidyl-prolyl isomerase—FK506 binding protein 51 (FKBP51)—was recently found to co-localize with the microtubule (MT)-associated protein tau in neurons and physically interact with tau in brain tissue from humans who died from Alzheimer’s disease (AD). Tau pathologically aggregates in neurons, a process that is closely linked with cognitive deficits in AD. Tau typically functions to stabilize and bundle MTs. Cellular events like calcium influx destabilize MTs, disengaging tau. This excess tau should be degraded, but sometimes it is stabilized and forms higher-order aggregates, a pathogenic hallmark of tauopathies. FKBP51 was also found to increase in forebrain neurons with age, further supporting a novel role for FKBP51 in tau processing. This, combined with compelling evidence that the prolyl isomerase Pin1 regulates tau stability and phosphorylation dynamics, suggests an emerging role for isomerization in tau pathogenesis.
Among the pathological hallmarks of Alzheimer's disease (AD) is the deposition of amyloid-beta (Abeta) peptides, primarily Abeta (1-40) and Abeta (1-42), in the brain as senile plaques. A large body of evidence suggests that cognitive decline and dementia in AD patients arise from the formation of various aggregated forms of Abeta, including oligomers, protofibrils and fibrils. Hence, there is increasing interest in designing molecular agents that can impede the aggregation process and that can lead to the development of therapeutically viable compounds. Here, we demonstrate the ability of the specifically designed alpha,beta-dehydroalanine (DeltaAla)-containing peptides P1 (K-L-V-F-DeltaA-I-DeltaA) and P2 (K-F-DeltaA-DeltaA-DeltaA-F) to inhibit Abeta (1-42) aggregation. The mechanism of interaction of the two peptides with Abeta (1-42) seemed to be different and distinct. Overall, the data reveal a novel application of DeltaAla-containing peptides as tools to disrupt Abeta aggregation that may lead to the development of anti-amyloid therapies not only for AD but also for many other protein misfolding diseases. (c) 2009 Wiley Periodicals, Inc. Biopolymers 91: 456-465, 2009.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.