This paper presents an experimental investigation of a capacitive-discharge spark ignition system designed to promote ignition in CH4-and C2H4-fuelled supersonic combustors. The purpose of this study is the characterization of the ignition system and the plasma generated in the discharge. Schlieren and luminescence imaging are used to visualize the temporal evolution of the spark plasma. Transient voltages and currents across the primary-side of the ignition coil and input-side of the ignition unit are recorded using a high-speed data acquisition system. Three different ignition coils are tested with two different spark plug gaps in an attempt to increase the performance of the ignition system which is evaluated through spatially and temporally integrated luminescence recordings as well as temporally integrated photo diode signals. The data suggests that an increase in performance of a factor of 4-5 over the baseline setup can be achieved. A capacitive ignition lead is used to assess whether or not any capacitance on the coil secondary side can increase the performance of the ignition system. The experiments have also shown that the ignition system parameters can be set to cause sufficient heating of the electrodes to support ignition from a combined glow-spark plug setup.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.