Introduction:Patients with congenital diaphragmatic hernias often have concomitant congenital heart disease (CHD), with small left-sided cardiac structures as a frequent finding. The goal of this study is to evaluate which left-sided heart structures are affected in neonates with congenital diaphragmatic hernias.Methods:Retrospective review of neonates between May 2007 and April 2015 with a diagnosis of a congenital diaphragmatic hernia was performed. Clinical and echocardiographic data were extracted from the electronic medical record and indexed to body surface area and compared to normative values. Univariable regression models assessed for associations between different variables and length of stay.Results:Data of 52 patients showed decreased mean z scores for the LVIDd (–3.16), LVIDs (–3.05), aortic annulus (–1.68), aortic sinuses (–2.11), transverse arch (–3.11), and sinotubular junction (–1.47) with preservation of the aorta at the diaphragm compared to age-matched normative data with similar body surface areas. Regression analysis showed a percent reduction in length of stay per 1 mm size increase for LVIDd (8%), aortic annulus (27%), aortic sinuses (18%), sinotubular junctions (20%), and transverse arches (25%).Conclusions:Patients with congenital diaphragmatic hernias have significantly smaller left-sided heart structures compared to age-matched normative data. Aortic preservation at the diaphragm provides evidence for a mass effect aetiology with increased right-to-left shunting at the fetal ductus resulting in decreased size. Additionally, length of stay appears to be prolonged with decreasing size of several of these structures. These data provide quantitative evidence of smaller left-sided heart structures in patients with congenital diaphragmatic hernias.
Progressive ventricular dysfunction is not uncommon in patients with univentricular hearts as they age. In the acute setting vasoactive support can be employed, but is not always sufficient and patients occasionally require mechanical support. We report the successful implantation and subsequent challenges of a percutaneous Abiomed Impella ventricular assist device as a rescue therapy for a 15-year old-patient with Fontan circulation and severe ventricular dysfunction after cardiac arrest.
Pediatricians must be able to diagnose, triage, and manage infants and children with congenital heart disease. The pediatric cardiology division at the Medical University of South Carolina updated their curriculum for pediatric residents to a format supported by constructivist learning theory. The purpose of this study is to determine if shorter, interactive learning with fellow and faculty involvement improved pediatric cardiology knowledge demonstrated through test scores and resident satisfaction. A curriculum of short lectures and interactive workshops was delivered over 6 weeks in August and September 2018. Residents answered a 10-question pretest prior to the curriculum, followed by a post-test immediately after the last session and a delayed post-test 8 months later. Residents also provided summative feedback on the educational sessions. Sixty-six residents were eligible to participate in the curriculum with 44 (67%) completing the pretest, 40 (61%) completing the post-test, and 33 (50%) completing the delayed post-test. The mean score increased significantly from 56 to 68% between the pretest and post-test (p = 0.0018). The delayed post-test mean score remained high at 71% without significant change (p = 0.46). Overall feedback was positive highlighting the interactive nature of lectures and the participation of cardiology fellows. Using an interactive, multimodal educational series, pediatric residents had a significant increase in pediatric cardiology test scores and demonstrated good retention.
G-protein-coupled receptors (GPCRs) represent the largest family of transmembrane receptors involved in cell signal transduction. Many of these GPCRs convey their pharmacological actions by regulating intracellular levels of 3',5'-cyclic adenosine monophosphate (cAMP). Although the heart expresses more than 100 GPCRs, drug agonists for approximately one third of these GPCRs have not been identified. The goal of this project was to initiate the development of a high-throughput screening assay for monitoring cAMP in the heart. Neonatal rat cardiac ventricular myocytes were isolated and cultured on coverslips (whole-cell patch clamp recording) or in 96-well plates (fluorescent imaging plate reader measurements). Cells were infected with adenovirus expressing either beta-galactosidase (AdLacZ) or a mutant cyclic nucleotide-gated (CNG) channel containing the double mutation C460W/E583M (AdCNG). Addition of 2 microM forskolin along with 100 microM 3-isobutyl-1-methylxanthine, to increase intracellular cAMP, activated a cation current in myocytes infected with the AdCNG. In myocytes loaded with the fluorescent Ca indicator Fluo-4, stimulation with forskolin, epinephrine, norepinephrine, or the beta-adrenergic receptor agonist isoproterenol increased the fluorescent signal indicative of Ca influx through the CNG channel. In conclusion, CNG channels are readily expressed in cultured cardiac myocytes and may be utilized in high-throughput screening assays of intracellular cAMP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.