The goal of Binding MOAD is to provide users with a dataset focused on high-quality X-ray crystal structures that have been solved with biologically relevant ligands bound. Where available, experimental binding affinities (K a , K d , K i , IC 50) are provided from the primary literature of the crystal structure. The database has been updated regularly since 2005, and this most recent update has added nearly 7000 new structures (growth of 21%). MOAD currently contains 32,747 structures, composed of 9,117 protein families and 16,044 unique ligands. The data is freely available on www.BindingMOAD.org. This paper outlines updates to the data in Binding MOAD as well as improvements made to both the website and its contents. The NGL viewer has been added to improve visualization of the ligands and protein structures. MarvinJS has been implemented, over the outdated MarvinView, to work with JChem for small molecule searching in the database. To add tools for predicting polypharmacology, we have added information about sequence, binding-site, and ligand similarity between entries in the database. A main premise behind polypharmacology is that similar binding sites will bind similar ligands. The large amount of protein-ligand information available in Binding MOAD allows us to compute pairwise ligand and binding-site similarities. Lists of similar ligands and similar binding sites have been added to allow users to identify potential polypharmacology pairs. To show the utility of the polypharmacology data, we detail a few examples from Binding MOAD of drug repurposing targets with their respective similarities.
We present the application of seven binding-site prediction algorithms to a meticulously curated dataset of ligand-bound and ligand-free crystal structures for 304 unique protein sequences (2528 crystal structures). We probe the influence of starting protein structures on the results of binding-site prediction, so the dataset contains a minimum of two ligand-bound and two ligand-free structures for each protein. We use this dataset in a brief survey of five geometry-based, one energy-based, and one machine-learning-based methods: Surfnet, Ghecom, LIGSITEcsc, Fpocket, Depth, AutoSite, and Kalasanty. Distributions of the F scores and Matthew’s correlation coefficients for ligand-bound versus ligand-free structure performance show no statistically significant difference in structure type versus performance for most methods. Only Fpocket showed a statistically significant but low magnitude enhancement in performance for holo structures. Lastly, we found that most methods will succeed on some crystal structures and fail on others within the same protein family, despite all structures being relatively high-quality structures with low structural variation. We expected better consistency across varying protein conformations of the same sequence. Interestingly, the success or failure of a given structure cannot be predicted by quality metrics such as resolution, Cruickshank Diffraction Precision index, or unresolved residues. Cryptic sites were also examined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.