Although vitamin D is critical for the function of the intestine, most studies have focused on the duodenum. We show that transgenic expression of the vitamin D receptor (VDR) only in the distal intestine of VDR null mice (KO/TG mice) results in the normalization of serum calcium and rescue of rickets. Although it had been suggested that calcium transport in the distal intestine involves a paracellular process, we found that the 1,25(OH)2D3 activated genes in the proximal intestine associated with active calcium transport (Trpv6, S100g, Atp2b1) are also induced by 1,25(OH)2D3 in the distal intestine of KO/TG mice. In addition, Slc30a10, a manganese efflux transporter, was one of the genes most induced by 1,25(OH)2D3 in both proximal and distal intestine. Both villus and crypt were found to express Vdr and VDR target genes. RNA-seq analysis of human enteroids indicated that the effects of 1,25(OH)2D3 observed in mice are conserved in humans. Using Slc30a10 -/- mice, a loss of cortical bone and a marked decrease in S100g and Trpv6 in the intestine was observed. Our findings suggest an interrelationship between vitamin D and intestinal Mn efflux and indicate the importance of distal intestinal segments to vitamin D action.
IntroductionCurrent therapy for Alzheimer's disease (AD) focuses on delaying progression, illustrating the need for more effective therapeutic targets. Histone deacetylase 6 (HDAC6) modulates tubulin acetylation and has been implicated as an attractive target. HDAC6 is also elevated in postmortem tissue samples from patients. However, HDAC6 inhibitors have had limited success preclinically due to low blood-brain barrier penetration.MethodWe investigated a specific, potent HDAC6 inhibitor (ACY-738) in a mouse model of AD. We determined the effects of ACY-738 treatment on axonal transport, behavior, and pathology in amyloid precursor protein/presenilin 1 mice.ResultsWe demonstrated improvements in in vivo axonal transport in two treatment groups as a result of ACY-738 brain levels. We also demonstrated recovery of short-term learning and memory deficits, hyperactivity, and modifications of tau and tubulin.DiscussionOur findings implicate specific, targeted HDAC6 inhibitors as potential therapeutics and demonstrate that further investigations are warranted into effects of HDAC6 inhibitors in AD.
The central role of vitamin D in calcium homeostasis is to increase calcium absorption from the intestine. This article describes the early work that served as the foundation for the initial model of vitamin D mediated calcium absorption. In addition, other research related to the role of vitamin D in the intestine, including those which have challenged the traditional model and the crucial role of specific calcium transport proteins, are reviewed. More recent work identifying novel targets of 1,25(OH) 2 D 3 action in the intestine and highlighting the importance of 1,25(OH) 2 D 3 action across the proximal/distal and crypt/villus axes in the intestine is summarized.
Enteroaggregative Escherichia coli (EAEC) is a significant cause of acute and chronic diarrhea, foodborne outbreaks, infections of the immunocompromised, and growth stunting in children in developing nations. There is no vaccine and resistance to antibiotics is rising. Unlike related E. coli pathotypes that are often associated with acute bouts of infection, EAEC is associated with persistent diarrhea and subclinical long-term colonization. Several secreted virulence factors have been associated with EAEC pathogenesis and linked to disease in humans, less certain are the molecular drivers of adherence to the intestinal mucosa. We previously established human intestinal enteroids (HIEs) as a model system to study host-EAEC interactions and aggregative adherence fimbriae A (AafA) as a major driver of EAEC adherence to HIEs. Here, we report a large-scale assessment of the host response to EAEC adherence from all four segments of the intestine across at least three donor lines for five E. coli pathotypes. The data demonstrate that the host response in the duodenum is driven largely by the infecting pathotype, whereas the response in the colon diverges in a patient-specific manner. Major pathways altered in gene expression in each of the four enteroid segments differed dramatically, with responses observed for inflammation, apoptosis and an overwhelming response to different mucin genes. In particular, EAEC both associated with large mucus droplets and specific mucins at the epithelial surface, binding
Colorectal cancer is the third most common cancer and the third leading cause of cancer death in the United States. Growth factor-independent 1 (GFI1) is a zinc finger transcriptional repressor responsible for controlling secretory cell differentiation in the small intestine and colon. GFI1 plays a significant role in the development of human malignancies, including leukemia, lung cancer, and prostate cancer. However, the role of GFI1 in colorectal cancer progression is largely unknown. Our results demonstrate that RNA and protein expression of GFI1 are reduced in advanced-stage nonmucinous colorectal cancer. Subcutaneous tumor xenograft models demonstrated that the reexpression of GFI1 in 4 different human colorectal cancer cell lines inhibits tumor growth. To further investigate the role of Gfi1 in de novo colorectal tumorigenesis, we developed transgenic mice harboring a deletion of Gfi1 in the colon driven by CDX2-cre (Gfi1 F/F ; CDX2-cre) and crossed them with Apc Min/þ mice (Apc Min/þ ; Gfi1 F/F ; CDX2-cre). Loss of Gfi1 significantly increased the total number of colorectal adenomas compared with littermate controls with an APC mutation alone. Furthermore, we found that compound (Apc Min/þ ; Gfi1 F/F ; CDX2-cre) mice develop larger adenomas, invasive carcinoma, as well as hyperplastic lesions expressing the neuroendocrine marker chromogranin A, a feature that has not been previously described in APC-mutant tumors in mice. Collectively, these results demonstrate that GFI1 acts as a tumor suppressor gene in colorectal cancer, where deficiency of Gfi1 promotes malignancy in the colon.Implications: These findings reveal that GFI1 functions as a tumor suppressor gene in colorectal tumorigenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.