There has been recurring interest in using magnetic neural stimulation for implantable localized stimulation. However, the large stimulation voltages and energies necessary to evoke neuronal activity have tempered this interest. To investigate the potential of magnetic stimulation as a viable methodology and to provide the ability to investigate novel coil designs that can result in lower stimulation threshold voltages and energies, there is a need for a model that accurately predicts the magnetic field-tissue interaction that results in neuronal stimulation. In this study, we provide a computational framework to accurately estimate the stimulation threshold and have validated the model with in vivo magnetic stimulation experiments. To make such predictions, we developed a micrometer-resolution anatomically driven computational model of rat sciatic nerve and quantified the effect of tissue heterogeneity (i.e., fascicular organization, axon distribution, and density) and axonal membrane capacitance on the resulting threshold. Using the multiresolution impedance method, we computed the spatial-temporal distribution of the induced electric field in the nerve and applied this field to a Frankenhaeuser-Huxley axon model in NEURON to simulate the nonlinear mechanisms of the membrane channels. The computational model developed predicts the stimulation thresholds for four magnetic coil designs with different geometrical parameters within the 95% confidence interval (experiments count = 4) of measured in vivo stimulation thresholds for the rat sciatic nerve.
Previous reports of magnetic stimulation of the peripheral nervous system (PNS) used various coil geometries, all with outer diameters larger than 35 mm, and stimulation energies in the 50 J range to evoke neural excitation. Recent reports of central nervous system (CNS) activation used sub-mm-scale solenoid coils with mJ energy levels. The goal of this study was to translate the lower energy levels from the CNS to the PNS via using smaller coils placed in closer proximity to the neural tissue. Such a performance improvement would advance the state of the art of magnetic stimulation and provide a path towards new neuroprosthetic devices. Primarily, we investigated the range of coil outer diameters from 25 mm down to 5 mm to better understand the dependence of coil diameter on energy required for PNS activation. Nine cm- and mm-scale copper solenoid coils, with various resistances, inductances, inner and outer diameters, and heights were compared by quantizing neuromuscular responses to magnetic stimulation via capacitive discharge excitation of rat sciatic nerves in vivo. Additionally, the effects of stimulus duration and coil position were investigated. As opposed to prior work, this study compares a subset of stimulation parameters in an intact nerve preparation, and shows that magnetic stimulation with coils that abut the nerve is a reliable, effective method of neuromuscular stimulation. Although we observed different energies required for neuromuscular activation depending on the coil and excitation parameters used, for the experimental configuration, devices, and stimulus waveform shapes presented in this manuscript, no systematic dependence of PNS activation on coil diameter was found, even for the mm-scale coils investigated herein. However, there was a clear relationship between discharge circuit capacitance and energy required to evoke a neuromuscular response. Coils approximately 12 mm in outer diameter and larger consistently evoked responses, whereas coils 5 mm in outer diameter did not. Furthermore, we observed meaningful neuromuscular excitation when stimulating with energies as low as 20 J. Although this is an improvement over prior work, it is still orders of magnitude greater than the energy required for conventional electrical stimulation, suggesting that these devices are presently not suitable for use in an application requiring continued pulsed stimulation. Nevertheless, these devices are suitable for basic research and as clinical tools that infrequently stimulate, such as in diagnostic applications.
New strategies for spinal cord stimulation (SCS) for chronic pain have emerged in recent years, which may work better via different analgesic mechanisms than traditional low-frequency (e.g., 50 Hz) paresthesia-based SCS. To determine if 10 kHz and burst SCS waveforms might have a similar mechanistic basis, we examined whether these SCS strategies at intensities ostensibly below sensory thresholds would modulate spinal dorsal horn (DH) neuronal function in a neuron type-dependent manner. By using an in vivo electrophysiological approach in rodents, we found that low-intensity 10 kHz SCS, but not burst SCS, selectively activates inhibitory interneurons in the spinal DH. This study suggests that low-intensity 10 kHz SCS may inhibit pain-sensory processing in the spinal DH by activating inhibitory interneurons without activating DC fibers, resulting in paresthesia-free pain relief, whereas burst SCS likely operates via other mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.