Preserving biodiversity and ecosystem function in the Anthropocene is one of humanity's greatest challenges. Ecosystem‐based management and area closures are considered an effective way to maintain ecological processes, especially in marine systems. Although there is strong evidence that such measures positively affect community structure, their impact on the rate of key ecological processes remains unclear. Here, we provide evidence that marine protected areas enhance herbivory rates on coral reefs via direct and indirect pathways. Using meta‐analysis and a path‐analytical framework, we demonstrate that, on average, protected areas increase the species richness of herbivorous fishes, which, in turn, enhances browsing rates on macroalgae. However, in all three regions studied (the Atlantic, Indian, and Pacific Ocean), a small subset of the herbivore assemblage accounted for the majority of browsing. Our results therefore indicate that ecosystem functioning on coral reefs may respond positively to both area closures and the protection of key species.
The northern Gulf of Mexico (nGOM) is a highly productive region and supports some of the world’s largest fisheries. Mesozooplankton represent a key linkage in coastal food webs for larval fish, both as food and as competition. While many studies have investigated seasonal patterns of mesozooplankton off the Louisiana coast and in the Mississippi Bight, there is little information about mesozooplankton communities on the Texas shelf. In this study, we investigated environmental drivers of mesozooplankton community variability over space and time. Samples were collected on the Texas shelf near Galveston Bay at seasonal intervals following Hurricane Harvey. Total mesozooplankton abundance were found to be highest in September. Diversity exhibited a hump-shaped pattern over the 6 months sampled, with the highest diversity occurring in October 2017. Taxa richness did not vary over the sampling period. Significant differences in mesozooplankton community structure were found only between September 2017 and March 2018. Community abundance was greatest nearshore, and zooplankton diversity was greatest on the shelf. Community structure was found to be driven by both temperature and salinity. Spatial and temporal patterns of specific larval fish prey are presented.
Tropical cyclones can highly modify coastal ecosystems through interactions between their unique set of meteorological traits and an ecosystem’s antecedent conditions. As such, resultant changes to biological community structure are likely storm-specific, yet our understanding of cyclone effects on marine communities is limited compared to communities in terrestrial and freshwater habitats. Using northwestern Gulf of Mexico (NWGOM) mesozooplankton data, we tested: (1) for differences between storm and non-storm community structure and dispersion; (2) if post-storm communities varied between one another; (3) if salinity drove differences; and (4) if physical drivers of abundance and evenness varied between storm and non-storm communities. Mesozooplankton community structure following Hurricanes Harvey, Ike, Rita, and during five non-storm years were analyzed. Post-Ike, post-Rita, and non-storm communities were similar while post-Harvey communities were distinct from non-storm years. A structural equation model revealed stratification and abundance drove community evenness. Post-Harvey mesozooplankton were more abundant in low salinity waters; a pattern muted during non-storm years. NWGOM mesozooplankton community structure was generally resilient to hurricane effects, except when large changes in salinity occurred. Our findings suggest resource availability for planktivorous predators and energy transfer within coastal food webs is altered following cyclones with high precipitation rates.
L. R. (2023). Using standardized fish-specific autonomous reef monitoring structures ( FARMS ) to quantify cryptobenthic fish communities. Methods in Ecology and Evolution. Portico.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.