Summary
Therapeutic drugs that block DNA repair, including poly(ADP-ribose) polymerase (PARP) inhibitors, fail due to lack of tumor-selectivity. When PARP inhibitors and β-lapachone are combined, synergistic antitumor activity results from sustained NAD(P)H levels that refuel NQO1-dependent futile redox drug recycling. Significant oxygen consumption rate/reactive oxygen species cause dramatic DNA lesion increases that are not repaired due to PARP inhibition. In NQO1+ cancers, such as non-small cell lung, pancreatic and breast, cell death mechanism switches from PARP1 hyperactivation-mediated programmed necrosis with β-lapachone monotherapy to synergistic tumor-selective, caspase-dependent apoptosis with PARP inhibitors and β-lapachone. Synergistic antitumor efficacy and prolonged survival were noted in human orthotopic pancreatic and non-small cell lung xenograft models, expanding use and efficacy of PARP inhibitors for human cancer therapy.
Superparamagnetic iron oxide nanoparticles (SPION) are an important and versatile nano- platform with broad biological applications. Despite extensive studies, the biological and pharmacological activities of SPION have not been exploited in therapeutic applications. Recently, β-lapachone (β-lap), a novel anticancer drug, has shown considerable cancer specificity by selectively increasing reactive oxygen species (ROS) stress in cancer cells. In this study, we report that pH-responsive SPION-micelles can synergize with β-lap for improved cancer therapy. These SPION-micelles selectively release iron ions inside cancer cells, which interact with hydrogen peroxide (H2O2) generated from β-lap in a tumor-specific, NQO1-dependent manner. Through Fenton reactions, these iron ions escalate the ROS stress in β-lap-exposed cancer cells, thereby greatly enhancing the therapeutic index of β-lap. More specifically, a 10-fold increase in ROS stress was detected in β-lap-exposed cells pretreated with SPION-micelles over those treated with β-lap alone, which also correlates with significantly increased cell death. Catalase treatment of cells or administration of an iron chelator can block the therapeutic synergy. Our data suggest that incorporation of SPION-micelles with ROS-generating drugs can potentially improve drug efficacy during cancer treatment, thereby provides a synergistic strategy to integrate imaging and therapeutic functions in the development of theranostic nanomedicine.
Improving patient outcome by personalized therapy involves a thorough
understanding of an agent’s mechanism of action. β-Lapachone
(clinical forms, Arq501/Arq761) has been developed to exploit dramatic
cancer-specific elevations in the phase II detoxifying enzyme, NAD(P)H:quinone
oxidoreductase (NQO1). NQO1 is dramatically elevated in solid cancers, including
primary and metastatic (e.g., triple-negative (ER-, PR-, Her2/Neu-)) breast
cancers. To define cellular factors that influence the efficacy of
β-lapachone using knowledge of its mechanism of action, we confirmed
that NQO1 was required for lethality and mediated a futile redox cycle where
~120 moles of superoxide were formed per mole of β-lapachone in
5 min. β-Lapachone induced reactive oxygen species (ROS), stimulated DNA
single strand break-dependent PARP1 hyperactivation, caused dramatic loss of
essential nucleotides (NAD+/ATP) and elicited programmed necrosis in breast
cancer cells. While PARP1 hyperactivation and NQO1 expression were major
determinants of β-lapachone-induced lethality, alterations in catalase
expression, including treatment with exogenous enzyme, caused marked
cytoprotection. Thus, catalase is an important resistance factor, and highlights
H2O2 as an obligate ROS for cell death from this
agent. Exogenous superoxide dismutase (SOD) enhanced catalase-induced
cytoprotection. β-Lapachone-induced cell death included AIF
translocation from mitochondria to nuclei, TUNEL+ staining, atypical PARP1
cleavage, and GAPDH S-nitrosylation, which were abrogated by catalase. We
predict that the ratio of NQO1:catalase activities in breast cancer versus
associated normal tissue are likely to be the major determinants affecting the
therapeutic window of β-lapachone and other NQO1 bioactivatable
drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.