The pure rotational spectrum of pyrimidine (m-C4H4N2), the meta-substituted dinitrogen analog of benzene, has been studied in the millimeter-wave region from 235 GHz to 360 GHz. The rotational spectrum of the ground vibrational state has been assigned and fit to yield accurate rotational and distortion constants. Over 1700 distinct transitions were identified for the normal isotopologue in its ground vibrational state and least-squares fit to a partial sextic S-reduced Hamiltonian. Transitions for all four singly substituted 13C and 15N isotopologues were observed at natural abundance and were likewise fit. Deuterium-enriched samples of pyrimidine were synthesized, giving access to all eleven possible deuterium-substituted isotopologues, ten of which were previously unreported. Experimental values of rotational constants and computed values of vibration–rotation interaction constants and electron-mass corrections were used to determine semi-experimental equilibrium structures (reSE) of pyrimidine. The reSE structure obtained using coupled-cluster with single, double, and perturbative triple excitations [CCSD(T)] corrections shows exceptional agreement with the re structure computed at the CCSD(T)/cc-pCV5Z level (≤0.0002 Å in bond distance and ≤0.03° in bond angle). Of the various computational methods examined, CCSD(T)/cc-pCV5Z is the only method for which the computed value of each geometric parameter lies within the statistical experimental uncertainty (2σ) of the corresponding semi-experimental coordinate. The exceptionally high accuracy and precision of the structure determination is a consequence of the large number of isotopologues measured, the precision and extent of the experimental frequency measurements, and the sophisticated theoretical treatment of the effects of vibration–rotation coupling and electron mass. Taken together, these demanding experimental and computational studies establish the capabilities of modern structural analysis for a prototypical monocyclic aromatic compound.
Probed by Liquid Jet Time-Resolved Photoelectron Spectroscopy. ChemRxiv. Preprint. The relaxation dynamics of thymine and its derivatives thymidine and thymidine monophosphate were studied using time-resolved photoelectron spectroscopy applied to a water microjet. Two absorption bands were studied, the first is a bright ππ* state which was populated using tunable-ultraviolet light in the range of 4.74-5.17 eV and probed using a 6.20 eV probe pulse. By reversing the order of these pulses, a band containing multiple ππ* states was populated by the 6.20 eV pulse and the lower energy pulse served as the probe. The lower lying ππ* state was found to decay in ~400 fs in both thymine and thymidine independent of pump photon energy while thymidine monophosphate decays varied from 670-840 fs with some pump energy dependence. The application of a computational QM/MM scheme at the XMS-CASPT2//CASSCF/AMBER level of theory suggests that conformational differences existing between thymidine and thymidine monophosphate in solution accounts for this difference. The higher lying ππ* band was found to decay in ~600 fs in all three cases, but was only able to be characterized when using the 5.17 eV probe pulse. Notably, no long-lived signal from an np* state could be identified in either experiment on any of the three molecules. File list (3) download file view on ChemRxiv Thymine_to_submit.docx (1.52 MiB) download file view on ChemRxiv SI_to_submit.docx (894.21 KiB) download file view on ChemRxiv Thymine_to_submit.pdf (1.40 MiB)
<p>The relaxation dynamics of thymine and its derivatives thymidine and thymidine monophosphate were studied using time-resolved photoelectron spectroscopy applied to a water microjet. Two absorption bands were studied, the first is a bright ππ* state which was populated using tunable-ultraviolet light in the range of 4.74 – 5.17 eV and probed using a 6.20 eV probe pulse. By reversing the order of these pulses, a band containing multiple ππ* states was populated by the 6.20 eV pulse and the lower energy pulse served as the probe. The lower lying ππ* state was found to decay in ~400 fs in both thymine and thymidine independent of pump photon energy while thymidine monophosphate decays varied from 670-840 fs with some pump energy dependence. </p><p>The application of a computational QM/MM scheme at the XMS-CASPT2//CASSCF/AMBER level of theory suggests that conformational differences existing between thymidine and thymidine monophosphate in solution accounts for this difference. The higher lying ππ* band was found to decay in ~600 fs in all three cases, but was only able to be characterized when using the 5.17 eV probe pulse. Notably, no long-lived signal from an np* state could be identified in either experiment on any of the three molecules.</p>
Conspectus The development of the liquid microjet technique by Faubel and co-workers has enabled the investigation of high vapor pressure liquids and solutions utilizing high-vacuum methods. One such method is photoelectron spectroscopy (PES), which allows one to probe the electronic properties of a sample through ionization in a state-specific manner. Liquid microjets consisting of pure solvents and solute–solvent systems have been studied with great success utilizing PES and, more recently, time-resolved PES (TRPES). Here, we discuss progress made over recent years in understanding the solvation and excited state dynamics of the solvated electron and nucleic acid constituents (NACs) using these methods, as well as the prospect for their future. The solvated electron is of particular interest in liquid microjet experiments as it represents the simplest solute system. Despite this simplicity, there were still many unresolved questions about its binding energy and excited state relaxation dynamics that are ideal problems for liquid microjet PES. In the work discussed in this Account, accurate binding energies were measured for the solvated electron in multiple high vapor pressure solvents. The advantages of liquid jet PES were further highlighted in the femtosecond excited state relaxation studies on the solvated electron in water where a 75 ± 20 fs lifetime attributable to internal conversion from the excited p-state to a hot ground state was measured, supporting a nonadiabatic relaxation mechanism. Nucleic acid constituents represent a class of important solutes with several unresolved questions that the liquid microjet PES method is uniquely suited to address. As TRPES is capable of tracking dynamics with state-specificity, it is ideal for instances where there are multiple excited states potentially involved in the dynamics. Time-resolved studies of NAC relaxation after excitation using ultraviolet light identified relaxation lifetimes from multiple excited states. The state-specific nature of the TRPES method allowed us to identify the lack of any signal attributable to the 1nπ* state in thymine derived NACs. The femtosecond time resolution of the technique also aided in identifying differences between the excited state lifetimes of thymidine and thymidine monophosphate. These have been interpreted, aided by molecular dynamics simulations, as an influence of conformational differences leading to a longer excited state lifetime in thymidine monophosphate. Finally, we discuss advances in tabletop light sources extending into the extreme ultraviolet and soft X-ray regimes that allow expansion of liquid jet TRPES to full valence band and potentially core level studies of solutes and pure liquids in liquid microjets. As most solutes have ground state binding energies in the range of 10 eV, observation of both excited state decay and ground state recovery using ultraviolet pump–ultraviolet probe TRPES has been intractable. With high-harmonic generation light sources, it will be possible to not only observe complete...
Pyrimidine, the meta substituted dinitrogen analog of benzene, has been studied in the mm-wave region from 260-360 GHz, expanding on previous studies up to 337 GHz. abc The spectra of all four of the singly-substituted 13 C and 15 N isotopologues were observed in natural abundance. Samples of deuterium enriched pyrimidine were synthesized, giving access to several deuterium-substituted isotopologues. The experimental rotational constants have been corrected for vibration-rotation coupling and electron mass. The vibration-rotation corrections were calculated with an anharmonic frequency calculation at the CCSD[T]/ANO1 level using CFOUR. An equilibrium structure determination has been performed using the corrected rotational constants with the xrefit module of CFOUR. Several vibrational satellites of pyrimidine have also been studied. Their rotational constants have been compared to those obtained computationally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.