BackgroundVector control through indoor residual spraying (IRS) has been employed on Bioko Island, Equatorial Guinea, under the Bioko Island Malaria Control Project (BIMCP) since 2004. This study analyses the change in mosquito abundance, species composition and outdoor host-seeking proportions from 2009 to 2014, after 11 years of vector control on Bioko Island.MethodsAll-night indoor and outdoor human landing catches were performed monthly in the Bioko Island villages of Mongola, Arena Blanca, Biabia and Balboa from 2009 to 2014. Collected mosquitoes were morphologically identified and a subset of Anopheles gambiae sensu lato (s.l.) were later identified molecularly to their sibling species. Mosquito collection rates, species composition and indoor/outdoor host-seeking sites were analysed using generalized linear mixed models to assess changes in mosquito abundance and behaviour.ResultsThe overall mosquito collection rate declined in each of the four Bioko Island villages. Anopheles coluzzii and Anopheles melas comprised the An. gambiae s.l. mosquito vector population, with a range of species proportions across the four villages. The proportion of outdoor host-seeking An. gambiae s.l. mosquitoes increased significantly in all four villages with an average increase of 58.8 % [57.9, 59.64 %] in 2009 to 70.0 % [67.8, 72.0 %] in 2014. Outdoor host-seeking rates did not increase in the month after an IRS spray round compared to the month before, suggesting that insecticide repellency has little impact on host-seeking behaviour.ConclusionWhile vector control on Bioko Island has succeeded in substantial reduction in overall vector biting rates, populations of An. coluzzii and An. melas persist. Host-seeking behaviour has changed in these An. gambiae s.l. populations, with a shift towards outdoor host-seeking. During this study period, the proportion of host-seeking An. gambiae s.l. caught outdoors observed on Bioko Island increased to high levels, exceeding 80 % in some locations. It is possible that there may be a genetic basis underlying this large shift in host-seeking behaviour, in which case outdoor feeding could pose a serious threat to current vector control programmes. Currently, the BIMCP is preparing for this potential challenge by testing source reduction as a complementary control effort that also targets outdoor transmission.Electronic supplementary materialThe online version of this article (doi:10.1186/s12936-016-1286-6) contains supplementary material, which is available to authorized users.
Background Households are hotspots for SARS-CoV-2 transmission. In the US, the COVID-19 pandemic has had a disproportionate impact on communities of color. Methods Between April-October 2020, the CO-HOST prospective cohort study enrolled 100 COVID-19 cases and 208 of their household members in North Carolina, including 44% who identified as Hispanic or non-white. Households were enrolled a median of 6 days from symptom onset in the index case. Incident secondary cases within the household were detected by quantitative PCR of weekly nasal swabs (days 7, 14, 21) or by seroconversion at day 28. Results Excluding 73 household contacts who were PCR-positive at baseline, the secondary attack rate among household contacts was 32% (33/103, 95% CI 22%-44%). The majority of cases occurred by day 7, with later cases confirmed as household-acquired by viral sequencing. Infected persons in the same household had similar nasopharyngeal viral loads (ICC=0.45, 95% CI 0.23-0.62). Households with secondary transmission had index cases with a median viral load that was 1.4 log10 higher than households without transmission (p=0.03) as well as higher living density (>3 persons occupying <6 rooms) (OR 3.3, 95% CI 1.02-10.9). Minority households were more likely to experience high living density and had a higher risk of incident infection than did white households (SAR 51% vs. 19%, p=0.01). Conclusions Household crowding in the context of high-inoculum infections may amplify the spread of COVID-19, potentially contributing to disproportionate impact on communities of color.
Background Anopheles (An.) coluzzii, one of Africa’s primary malaria vectors, is highly anthropophilic. This human host preference contributes greatly to its ability to transmit malaria. In contrast, the closely related An. quadriannulatus prefers to feed on bovids and is not thought to contribute to malaria transmission. The diverged preference for host odor profiles between these sibling species is likely reflected in chemosensory gene expression levels in the olfactory organs. Therefore, we compared the transcriptomes of the antennae and maxillary palps between An. coluzzii and An. quadriannulatus, focusing on the major chemosensory gene families.ResultsWhile chemosensory gene expression is strongly correlated between the two species, various chemosensory genes show significantly enhanced expression in one of the species. In the antennae of An. coluzzii the expression of six olfactory receptors (Ors) and seven ionotropic receptors (Irs) is considerably enhanced, whereas 11 Ors and 3 Irs are upregulated in An. quadriannulatus. In the maxillary palps, leaving aside Irs with very low level of expression, one Ir is strongly enhanced in each species. In addition, we find divergence in odorant binding protein (Obp) gene expression, with several highly expressed Obps being enhanced in the antennae and palps of An. coluzzii. Finally, the expression of several gustatory receptors (Grs) in the palps appears to be species-specific, including a homolog of a sugar-sensing Drosophila Gr. ConclusionsA considerable number of Ors and Irs are differentially expressed between these two closely related species with diverging host preference. These chemosensory genes could play a role in the human host preference of the malaria vector An. coluzzii. Additionally, divergence in Obp expression between the two species suggests a possible role of these odor carrier proteins in determining host preference. Finally, divergence in chemosensory expression in the palps may point towards a possible role for the maxillary palps in host differentiation.Electronic supplementary materialThe online version of this article (10.1186/s12864-017-4122-7) contains supplementary material, which is available to authorized users.
The Wet Tropics of Queensland, Australia, represent the largest remaining fragment of vast rainforests that once covered the entire continent. Over the past few decades the Wet Tropics bioregion has received much attention from biologists interested in the effect of climate change on diversity and distribution of rainforest animals. However, most such studies have focused on vertebrates, and despite considerable interest in the biota of the area, the diversity of many of Wet Tropics invertebrate taxa remains poorly known. Here we describe six new species of mite harvestman from the area, identified using a combination of morphological and molecular data. Our study represents the first detailed phylogenetic study of the genus Austropurcellia, and provides insight into the historical biogeography of these dispersal-limited arachnids.
Austropurcellia Juberthie 1988 is a genus of mite harvestmen previously known from numerous localities in the Wet Tropics of northern Queensland and from one locality in central Queensland, Australia. As a result of the current study, the genus is now also known from localities in far southeast Queensland. We describe three new species of Austropurcellia from museum lots: A. acuta sp. nov., A. barbata sp. nov., and A. superbensis sp. nov. Each new species is known from only one to two localities, and from very few specimens. In addition, we describe a pair of previously overlooked dorsal anterior cuticular structures that may be sensory in nature and are found in all Austropurcellia specimens examined, including both new and previously described species. We present a new distribution map of Austropurcellia, greatly expanding its known range to almost the entire east coast of Queensland, and discuss the biogeography of the genus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.