RNA splicing is a key component of gene expression and proteomic diversity in humans. The spliceosome assembles on and processes individual nascent pre-mRNA transcripts into distinct mature mRNAs that can code for different proteins. Splicing programs can be affected by somatic mutations and changes in response to exogenous stimuli. Importantly, alterations in splicing can be direct drivers of diseases including cancers. This Review describes recent advances and the potential for targeting and controlling pre-mRNA splicing in humans with small molecules, ranging from targeting spliceosomal proteins to direct targeting of individual RNA transcripts.
Neuroblastoma RAS (NRAS) is an oncogene that is deregulated and highly mutated in cancers including melanomas and acute myeloid leukemias. Constitutively activated NRAS induces the MAPK and AKT signaling pathways and leads to uncontrolled proliferation and cell growth, making it an attractive target for small molecule inhibition. Like all RAS-family proteins, it has proven difficult to identify small molecules that directly inhibit the protein. An alternative approach would involve targeting the NRAS mRNA. The 5′ untranslated region (5′ UTR) of the NRAS mRNA is reported to contain a G-quadruplex (G4) that regulates translation of NRAS mRNA. Stabilizing the G4 structure with small molecules could reduce NRAS protein expression in cancer cells by impacting translation. Here we report a novel class of small molecule that binds to the G4 structure located in the 5′ UTR of the NRAS mRNA. We used a small molecule microarray (SMM) screen to identify molecules that selectively bind to the NRAS-G4. Biophysical studies demonstrated that compound 18 binds reversibly to the NRAS-G4 structure with submicromolar affinity. A Luciferase based reporter assay indicated that 18 inhibits the translation of NRAS via stabilizing the NRAS-G4 in vitro but showed only moderate effects on the NRAS levels in cellulo. Rapid Amplification of cDNA Ends (RACE), RT-PCR analysis on 14 different NRAS-expressing cell lines, coupled with analysis of publicly available CAGE seq experiments, revealed that predominant NRAS transcript does not possess the G4 structure. Further analysis of published rG4 and G4 sequencing data indicated the presence of G4 structure in the promoter region of NRAS gene (DNA) but not in the mRNA. Thus, although many NRAS transcripts lack a G4 in many cell lines the broader concept of targeting folded regions within 5' UTRs to control translation remains a highly attractive strategy and this work represents an intriguing example of transcript heterogeneity impacting targetability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.