The fabrication of microdevices for fluidic control often requires the use of flexible diaphragms in a way that requires cleanroom equipment and compromises performance. We use a CO2 laser to perform the standard ablative techniques of cutting and engraving materials, but we also apply a method that we call laser placement. This allows us to fabricate precisely-positioned and precisely-sized, isolated diaphragms. This in turn enables the rapid prototyping of integrated multilayer microfluidic devices to form complex structures without the need for manual positioning or cleanroom equipment. The fabrication process is also remarkably rapid and capable of being scaled to manufacturing levels of production. We explore the use of these devices to construct a compact system of peristaltic pumps that can form water in oil droplets without the use of the non-pulsatile pumping systems typically required. Many devices can be fabricated at a time on a sheet by sheet basis with a fabrication process that, to our knowledge, is the fastest reported to date for devices of this type (requiring only 3 h). Moreover, this system is unusually compact and self-contained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.