We compare two approaches for quantile estimation via randomized quasi-Monte Carlo (RQMC) in an asymptotic setting where the number of randomizations for RQMC grows large but the size of the low-discrepancy point set remains fixed. In the first method, for each randomization, we compute an estimator of the cumulative distribution function (CDF), which is inverted to obtain a quantile estimator, and the overall quantile estimator is the sample average of the quantile estimators across randomizations. The second approach instead computes a single quantile estimator by inverting one CDF estimator across all randomizations. Because quantile estimators are generally biased, the first method leads to an estimator that does not converge to the true quantile as the number of randomizations goes to infinity. In contrast, the second estimator does, and we establish a central limit theorem for it. Numerical results further illustrate these points.
We consider the problem of estimating the p-quantile of a distribution when observations from that distribution are generated from a simulation model. The standard estimator takes the p-quantile of the empirical distribution of independent observations obtained by Monte Carlo. As an improvement, we use conditional Monte Carlo to obtain a smoother estimate of the distribution function, and we combine this with randomized quasi-Monte Carlo to further reduce the variance. The result is a much more accurate quantile estimator, whose mean square error can converge even faster than the canonical rate of O(1/n).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.