Over a decade has passed since myocilin was identified as the first gene linked to early and late-onset primary open-angle glaucoma. During this time, considerable effort has been put forth to understand the functional role myocilin has in normal and glaucomatous eyes. Myocilin is expressed in many ocular and non-ocular tissues, is found in both intracellular and extracellular spaces, and has been linked to elevations in intraocular pressure. Mutations in the myocilin gene that have been associated with glaucoma appear to confer a gain-of-functional activity rather than loss of function. Unfortunately, what the normal function of myocilin is and how alterations in the function can confer a glaucoma phenotype have yet to be elucidated. We will review the current understanding of myocilin with special emphasis on the structural makeup of the myocilin gene and protein, its possible physiological roles internal and external to ocular cells, the regulation of intraocular pressure as evidenced through the use of perfusion culture systems and animal models, and as a causative agent in some forms of glaucoma.
The insulin-like growth factor (IGF) signaling pathway is involved in certain human cancers, and the feasibility of directly targeting the IGF receptor has been actively investigated. However, recent evidence from clinical trials suggests that this approach can be problematic. We have developed an alternative strategy to indirectly inhibit the IGF signaling by targeting the metalloproteinase, pregnancy-associated plasma protein-A (PAPP-A). PAPP-A associated with the cell surface cleaves IGF binding protein-4 (IGFBP-4), when IGF is bound to IGFBP-4, and thereby increases IGF bioavailability for receptor activation in an autocrine/paracrine manner. We hypothesized that inhibition of PAPP-A would suppress excessive local IGF signaling in tissues where this is caused by increased PAPP-A proteolytic activity. To test this hypothesis, we developed an inhibitory monoclonal antibody, mAb 1/41, which targets a unique substrate-binding exosite of PAPP-A. This inhibitor selectively and specifically inhibits proteolytic cleavage of IGFBP-4 with an inhibitory constant (Ki) of 135 pM. In addition, it inhibited intracellular signaling of the IGF receptor (AKT phosphorylation) in monolayers of A549 cells, an IGF-responsive lung cancer-derived cell line found to express high levels of PAPP-A. We further showed that mAb 1/41 is effective towards PAPP-A bound to cell surfaces, and that it is capable of inhibiting PAPP-A activity in vivo. Using a murine xenograft model of A549 cells, we demonstrated that mAb 1/41 administered intraperitoneally significantly inhibited tumor growth. Analysis of xenograft tumor tissue recovered from treated mice showed penetration of mAb 1/41, reduced IGFBP-4 proteolysis, and reduced AKT phosphorylation. Our study provides proof of concept that IGF signaling can be selectively reduced by targeting a regulatory proteinase that functions extracellularly, upstream of the IGF receptor. PAPP-A targeting thus represents an alternative therapeutic strategy for inhibiting IGF receptor signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.