Atopic dermatitis (AD) is a chronic inflammatory disease that affects approximately 2-5% of adults worldwide. The pathogenesis of AD continues to be a well-debated point of conjecture, with numerous hypotheses having been proposed. AD conditions are associated with increased populations of Staphylococcus aureus and reduced skin lipids. In this study, we evaluate the ability of S. aureus to permeate across human stratum corneum (SC) exhibiting both normal and depleted lipid conditions consistent with AD. This permeation would enable bacteria to interact with underlying viable epidermal cells, which could serve as a trigger for inflammation and disease onset. Our results indicate that permeation of S. aureus through SC exhibiting normal lipid conditions is not statistically significant. However, bacteria can readily permeate through lipid depleted tissue over a 9-d period. These findings suggest that S. aureus may potentially act as the mechanistic cause, rather than merely the result of AD.
Contemporary studies have revealed dramatic changes in the diversity of bacterial microbiota between healthy and diseased skin. However, the prevailing use of swabs to extract the microorganisms has meant that only population 'snapshots' are obtained, and all spatially resolved information of bacterial growth is lost. Here we report on the temporospatial growth of on the surface of the human stratum corneum (SC); the outermost layer of skin. This bacterial species dominates bacterial populations on skin with atopic dermatitis (AD). We first establish that the distribution of ceramides naturally present in the SC is heterogeneous, and correlates with the tissue's structural topography. This distribution subsequently impacts the growth of bacterial biofilms. In the SC retaining healthy ceramide concentrations, biofilms exhibit no spatial preference for growth. By contrast, a depletion of ceramides consistent with reductions known to occur with AD enables to use the patterned network of topographical canyons as a conduit for growth. The ability of ceramides to govern bacterial growth is confirmed using a topographical skin canyon analogue coated with the ceramide subcomponent d-sphingosine. Our work appears to explain the causal link between ceramide depletion and increased populations that is observed in AD. It may also provide insight into disease transmission as well as improving pre-operative skin cleansing techniques.
Prolonged exposure of human skin to sunlight causes photodamage, which induces the early onset of wrinkles and increased tissue fragility. While solar ultraviolet (UV) light is considered to have the most damaging effect, the UV range that is most harmful remains a topic of significant debate. In this study, we take a first step towards elucidating biomechanical photoageing effects by quantifying how exposure to different UV ranges and dosages impacts the mechanical and structural properties of human stratum corneum (SC), the most superficial skin layer. Mechanical testing reveals that irradiation of isolated human SC to UVA (365 nm), UVB (302 nm), or UVC (265 nm) light with dosages of up to 4000 J/cm2notably alters the elastic modulus, fracture stress, fracture strain, and work of fracture. For equivalent incident dosages, UVC degrades SC the greatest. However, upon discounting reflected and transmitted components of the incident light, a generalized scaling law relating the photonic energy absorbed by the SC to the energy cost of tissue fracture emerges. This relationship indicates that no one UV range is more damaging than another. Rather, the magnitude of absorbed UV energy governs the degradation of tissue mechanical integrity. Subsequent structural studies are performed to elucidate the cause of this mechanical degradation. UV absorption scales with the spatial dispersion of desmoglein 1 (Dsg 1), a component of corneocyte cell-cell junctions, away from intercellular sites. Combining both scaling laws, we establish a mechanical-structural model capable of predicting UV induced tissue mechanical integrity from Dsg 1 dispersion.Statement of SignificancePhotoageing from the sun can produce early onset of skin wrinkles and an increase in tissue fragility that heightens the risk of rupture. While solar ultraviolet (UV) light is considered to have the most damaging effect, the UV range that is most harmful remains a topic of significant debate. In this study, we elucidate photoageing effects by quantifying how exposure to different UV ranges and dosages impacts the mechanical and structural properties of human stratum corneum (SC), the most superficial skin layer. Results establish a mechanical-structural model that relates the amount of UV energy absorbed by the tissue, irrespective of UV range, to the energy cost of tissue fracture and spatial dispersion of desmoglein 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.