Electronic waste (e-waste) contains a wide range of elements, many of which are highly toxic to environmental and human health. On the other hand e-waste represents a significant potential source of valuable metals. This study used microbial oxidation of pyrite to generate a biolixiviant. Its efficiency in the dissolution of metals from printed circuit boards (PCBs) was evaluated as well as the effects of metals and PCB concentrations on microbial activity.The addition of elemental metals (Cu, Cr, Ni, Sn, Zn) had an immediate inhibitory effect on pyrite oxidation, though leaching recovered after a period of adaptation. Bioleaching was inhibited initially by the addition of 1 % (w/v) ground PCB, but recovered rapidly, whereas pulp densities of ≥ 5 % had sustained negative impacts on culture activity and viability. The loss of culture viability meant that only abiotic copper dissolution occurred at ≥ 5 % PCB.Final copper recoveries declined with increasing PCB pulp density. The relatively high content of elemental iron caused a lag period in copper solubilisation possibly due to displacement reactions. Leptospirillum ferriphilum was primarily responsible for pyrite oxidation, and most affected by both the pure metals (particularly Ni and Cu) and PCB.
Clinical application of antimicrobial peptides (AMPs), as with conventional antibiotics, may be compromised by the development of bacterial resistance. This study investigated AMP resistance in methicillin resistant Staphylococcus aureus, including aspects related to the resilience of the resistant bacteria toward the peptides, the stability of resistance when selection pressures are removed, and whether resistance can be overcome by using the peptides with other membrane-permeabilising agents. Genotypically variant strains of S. aureus became equally resistant to the antibacterial peptides melittin and bac8c when grown in sub-lethal concentrations. Subculture of a melittin-resistant strain without melittin for 8 days lowered the minimal lethal concentration of the peptide from 170 μg ml-1 to 30 μg ml-1. Growth for 24 h in 12 μg ml-1 melittin restored the MLC to 100 μg ml-1. Flow cytometry analysis of cationic fluorophore binding to melittin-naïve and melittin-resistant bacteria revealed that resistance coincided with decreased binding of cationic molecules, suggesting a reduction in nett negative charge on the membrane. Melittin was haemolytic at low concentrations but the truncated analog of melittin, mel12-26, was confirmed to lack haemolytic activity. Although a previous report found that mel12-26 retained full bactericidal activity, we found it to lack significant activity when added to culture medium. However, electroporation in the presence of 50 μg ml-1 of mel12-26, killed 99.3% of the bacteria. Similarly, using a low concentration of the non-ionic detergent Triton X-100 to permeabilize bacteria to mel12-26 markedly increased its bactericidal activity. The observation that bactericidal activity of the non-membranolytic peptide mel12-26 was enhanced when the bacterial membrane was permeablized by detergents or electroporation, suggests that its principal mechanism in reducing bacterial survival may be through interaction with intracellular organelles or processes. Additionally, our results showed that the haemolytic peptide bac8c, had increased antibacterial activity at non-haemolytic concentrations when used with membrane-permeabilizing surfactants.
Short aramid fibers have been successfully used to reinforce the interface adhesive property between carbon fiber/epoxy composites and aluminum foam, and to form aramid-fiber "composite adhesive joints." In this study, to further improve the reinforcing effect of the aramid-fiber-reinforced adhesive joints, aramid fibers were ultrasonic treated to conduct different surface conditions. Critical energy release rate of the carbon fiber/aluminum foam sandwich beams with asreceived and treated interfacial aramid fibers were measured to study the influence of the surface treatment on aramid fibers. It was found that reinforcements in critical energy release rate were achieved for all samples with treated aramid fiber as measured under double cantilever beam condition. The interfacial characteristics of the short aramid fibers with different surface condition were investigated and discussed based on scanning electron microscopy observations. It is suggested that advanced bonding between aramid fibers and epoxy resin was conducted after surface treatment, and more energy was therefore absorbed through fiber bridging during crack opening and extension process. POLYM. COMPOS.,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.