WHAT'S KNOWN ON THIS SUBJECT:Oral vaccine responses are low in children from less-developed countries perhaps as a result of intestinal dysbiosis. New high-throughput DNA-based methods allow characterization of intestinal microbiota as a predictor of vaccine responses.WHAT THIS STUDY ADDS: High abundance of stool Actinobacteria, including Bifidobacterium, was associated with higher responses to oral and parenteral vaccines and a larger thymus in Bangladeshi infants. Conversely, high abundance of Clostridiales, Enterobacteriales, and Pseudomonadales was associated with neutrophilia and lower vaccine responses. abstract OBJECTIVE: Oral vaccine efficacy is low in less-developed countries, perhaps due to intestinal dysbiosis. This study determined if stool microbiota composition predicted infant oral and parenteral vaccine responses. METHODS:The stool microbiota of 48 Bangladeshi infants was characterized at 6, 11, and 15 weeks of age by amplification and sequencing of the 16S ribosomal RNA gene V4 region and by Bifidobacterium-specific, quantitative polymerase chain reaction. Responses to oral polio virus (OPV), bacille Calmette-Guérin (BCG), tetanus toxoid (TT), and hepatitis B virus vaccines were measured at 15 weeks by using vaccine-specific T-cell proliferation for all vaccines, the delayed-type hypersensitivity skin-test response for BCG, and immunoglobulin G responses using the antibody in lymphocyte supernatant method for OPV, TT, and hepatitis B virus. Thymic index (TI) was measured by ultrasound.RESULTS: Actinobacteria (predominantly Bifidobacterium longum subspecies infantis) dominated the stool microbiota, with Proteobacteria and Bacteroidetes increasing by 15 weeks. Actinobacteria abundance was positively associated with T-cell responses to BCG, OPV, and TT; with the delayed-type hypersensitivity response; with immunoglobulin G responses; and with TI. B longum subspecies infantis correlated positively with TI and several vaccine responses. Bacterial diversity and abundance of Enterobacteriales, Pseudomonadales, and Clostridiales were associated with neutrophilia and lower vaccine responses.CONCLUSIONS: Bifidobacterium predominance may enhance thymic development and responses to both oral and parenteral vaccines early in infancy, whereas deviation from this pattern, resulting in greater bacterial diversity, may cause systemic inflammation (neutrophilia) and lower vaccine responses. Vaccine responsiveness may be improved by promoting intestinal bifidobacteria and minimizing dysbiosis early in infancy.
BackgroundIndividuals with inactive alleles of the fucosyltransferase 2 gene (FUT2; termed the ‘secretor’ gene) are common in many populations. Some members of the genus Bifidobacterium, common infant gut commensals, are known to consume 2′-fucosylated glycans found in the breast milk of secretor mothers. We investigated the effects of maternal secretor status on the developing infant microbiota with a special emphasis on bifidobacterial species abundance.ResultsOn average, bifidobacteria were established earlier and more often in infants fed by secretor mothers than in infants fed by non-secretor mothers. In secretor-fed infants, the relative abundance of the Bifidobacterium longum group was most strongly correlated with high percentages of the order Bifidobacteriales. Conversely, in non-secretor-fed infants, Bifidobacterium breve was positively correlated with Bifidobacteriales, while the B. longum group was negatively correlated. A higher percentage of bifidobacteria isolated from secretor-fed infants consumed 2′-fucosyllactose. Infant feces with high levels of bifidobacteria had lower milk oligosaccharide levels in the feces and higher amounts of lactate. Furthermore, feces containing different bifidobacterial species possessed differing amounts of oligosaccharides, suggesting differential consumption in situ.ConclusionsInfants fed by non-secretor mothers are delayed in the establishment of a bifidobacteria-laden microbiota. This delay may be due to difficulties in the infant acquiring a species of bifidobacteria able to consume the specific milk oligosaccharides delivered by the mother. This work provides mechanistic insight into how milk glycans enrich specific beneficial bacterial populations in infants and reveals clues for enhancing enrichment of bifidobacterial populations in at risk populations - such as premature infants.Electronic supplementary materialThe online version of this article (doi:10.1186/s40168-015-0071-z) contains supplementary material, which is available to authorized users.
Human milk oligosaccharides (HMOs) play an important role in the health of an infant as substrate for beneficial gut bacteria. Little is known about the effects of HMO composition and its changes on the morbidity and growth outcomes of infants living in areas with high infection rates. Mother’s HMO composition and infant gut microbiota from 33 Gambian mother/infant pairs at 4, 16, and 20 weeks postpartum were analyzed for relationships between HMOs, microbiota, and infant morbidity and growth. The data indicate that lacto-N-fucopentaose I was associated with decreased infant morbidity, and 3′-sialyllactose was found to be a good indicator of infant weight-for-age. Because HMOs, gut microbiota, and infant health are interrelated, the relationship between infant health and their microbiome were analyzed. While bifidobacteria were the dominant genus in the infant gut overall, Dialister and Prevotella were negatively correlated with morbidity, and Bacteroides was increased in infants with abnormal calprotectin. Mothers nursing in the wet season (July to October) produced significantly less oligosaccharides compared to those nursing in the dry season (November to June). These results suggest that specific types and structures of HMOs are sensitive to environmental conditions, protective of morbidity, predictive of growth, and correlated with specific microbiota.
Objective To determine the impact of two probiotic bifidobacteria on the fecal microbiota of premature infants fed either human milk or formula. Study design In the first of two phase 1 clinical trials, twelve premature infants receiving formula feedings were randomly assigned to receive either Bifidobacterium longum ssp infantis or Bifidobacterium animalis ssp lactis in increasing doses over a five week period. In the second, nine premature infants receiving their mother’s milk received each of the two bifidobacteria for two weeks separated by a one week wash out period. Serial stool specimens from each infant were analyzed by terminal restriction fragment length polymorphism and quantitative polymerase chain reaction for bacterial composition. Results Among the formula-fed infants, there was a greater increase in fecal bifidobacteria among infants receiving B. infantis than those receiving B. lactis. This difference was most marked at a dose of 1.4 × 109 cfu twice daily (p < 0.05). Bacterial diversity improved over dose/time in those infants receiving B. infantis. Among the human milk-fed infants, greater increases in fecal bifidobacteria and decreases in γ-Proteobacteria followed administration of B. infantis than B. lactis. The B. longum group (which includes B. infantis but not B. lactis) was the dominant bifidobacteria among the human milk-fed infants, regardless of the probiotic administered. Conclusions B. infantis was more effective at colonizing the fecal microbiota than B. lactis in both formula-fed and human milk-fed premature infants. The combination of human milk plus B. infantis resulted in the highest fecal levels of bifidobacteria.
Background The ingestion of probiotics to attempt to improve health is increasingly common, however quality control of some commercial products can be limited. Clinical practice is shifting toward the routine use of probiotics to aid in prevention of necrotizing enterocolitis in premature infants, and probiotic administration to term infants is increasingly common to treat colic and/or prevent atopic disease. Since bifidobacteria dominate the feces of healthy breast-fed infants, they are often included in infant-targeted probiotics. Methods We evaluated sixteen probiotic products to determine how well their label claims describe the species of detectable bifidobacteria in the product. Recently-developed DNA-based methods were used as a primary means of identification, and were confirmed using culture-based techniques. Results We found that the contents of many bifidobacterial probiotic products differ from the ingredient list, sometimes at a subspecies level. Only one of the sixteen probiotics perfectly matched its bifidobacterial label claims in all samples tested, and both pill-to-pill and lot-to-lot variation were observed. Conclusion Given the known differences between various bifidobacterial species and subspecies in metabolic capacity and colonization abilities, the prevalence of misidentified bifidobacteria in these products is cause for concern for those involved in clinical trials and consumers of probiotic products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.