Nucleosides containing ester groups that are sensitive to nucleophiles were incorporated into oligodeoxynucleotides (ODNs) through solid phase chemical synthesis. The sensitive esters are located on a purine nucleobase. They are the esters of ethyl, 2‐methoxyethyl, 4‐methoxyphenyl and phenyl groups, and a thioester. These esters cannot survive the deprotection and cleavage conditions used in known ODN synthesis technologies, which involve strong nucleophiles such as ammonium hydroxide and potassium methoxide (potassium carbonate in anhydrous methanol). To incorporate these sensitive groups into ODNs, the Dmoc (i. e. dimethyl‐1,3‐dithian‐2‐ylmethoxycarbonyl) phosphoramidites and linker were used for solid phase synthesis, which allowed ODN deprotection and cleavage to be carried out under non‐nucleophilic oxidative conditions. Sixteen ODN sequences containing these groups were synthesized and characterized with MALDI MS. In addition, the synthesis and characterization of three ODNs containing a nucleophile sensitive 6‐chloropurine using the same strategy are described.
The citizen Continental-America Telescopic Eclipse (CATE) Experiment was a new type of citizen science experiment designed to capture a time sequence of white-light coronal observations during totality from 17:16 to 18:48 UT on 2017 August 21. Using identical instruments the CATE group imaged the inner corona from 1 to 2.1 RSun with 1.″43 pixels at a cadence of 2.1 s. A slow coronal mass ejection (CME) started on the SW limb of the Sun before the total eclipse began. An analysis of CATE data from 17:22 to 17:39 UT maps the spatial distribution of coronal flow velocities from about 1.2 to 2.1 RSun, and shows the CME material accelerates from about 0 to 200 km s−1 across this part of the corona. This CME is observed by LASCO C2 at 3.1–13 RSun with a constant speed of 254 km s−1. The CATE and LASCO observations are not fit by either constant acceleration nor spatially uniform velocity change, and so the CME acceleration mechanism must produce variable acceleration in this region of the corona.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.