Aquaponics, in which fish and plants are grown in a symbiotic closed-loop industrial metabolism, are promising test beds to implement industrial ecology in food production at a commercial scale. These systems have the potential to enhance the environmental and economic performance of aquaculture systems by reducing the overall burden on natural ecosystems (i.e., reducing resource and emission-based impacts per unit of food produced). To holistically evaluate the environmental and economic implications of aquaponics, specifically in a cold-weather climate, Life Cycle Assessment (LCA) and Economic Analysis (EA) were performed on a Midwestern United States aquaponic system, using data from 3 years of annual operation cycles with varying fish species production; tilapia, conventional walleye, and hybrid walleye. For the LCA, environmental impacts were quantified using 10 midpoint indicators. Assessments indicated that 1-kg production of live-weight tilapia, conventional walleye, and hybrid walleye resulted in 20.2-13.8-11.7 kg CO 2 -eq, 23.0-7.8-3.9 g N-eq, and 0.2-0.3-0.4 kg SO 2 -eq, consecutively, using the investigated system. The most sensitive parameters for environmental impacts were heat, aquafeed, electricity, and infrastructure (in all scenarios).For EA, benefit to cost ratios (BCRs) and three other widely used indices were analyzed for production cycles. The BCRs were 0.47, 1.16, and 1.75 for tilapia, conventional walleye, and hybrid walleye, respectively (using a 10% discount rate and a 20-year horizon), highlighting the necessity of optimizing both cash inflows (e.g., energy costs) and outflows (plant and fish revenues) to achieve practical enhancement of return on investments. The major cost contributors were infrastructure, labor, and heat (contributing to >89% of total costs for all cycles). Suggested steps for in-effect improvement of the investigated aquaponic system's environmental and economic favorability include heat and infrastructure optimization by (a) applying effective heating strategies (e.g., advanced insulation techniques), and (b) expanding the system's operational lifespan (e.g., prevention of waste accumulation).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.