Schistosomiasis affects over 700 million people globally. 90% of the infected live in sub-Saharan Africa, where the trematode species Schistosoma mansoni and S. haematobium transmitted by intermediate hosts (IH) of the gastropod genera Biomphalaria and Bulinus are the major cause of the human disease burden. Understanding the factors influencing the distribution of the IH is vital towards the control of human schistosomiasis. We explored the applicability of a machine learning algorithm, random forest, to determine significant predictors of IH distribution and their variation across different geographic scales in crater lakes in western Uganda. We found distinct variation in the potential controls of IH snail distribution among the two snail genera as well as across different geographic scales. On the larger scale, geography, diversity of the associated mollusk fauna and climate are important predictors for the presence of Biomphalaria, whereas mollusk diversity, water chemistry and geography mainly control the occurrence of Bulinus. Mollusk diversity and geography are relevant for the presence of both genera combined. On the scale of an individual crater lake field, Biomphalaria is solely controlled by geography, while mollusk diversity is most relevant for the presence of Bulinus. Our study demonstrates the importance of combining a comprehensive set of predictor variables, a method that allows for variable selection and a differentiated assessment of different host genera and geographic scale to reveal relevant predictors of distribution. The results of our study contribute to making realistic predictions of IH snail distribution and schistosomiasis prevalence and can help in supporting strategies towards controlling the disease.
One of the most deadly neglected tropical diseases known to man is schistosomiasis. Understanding how the disease spreads and evaluating the relevant control strategies are key steps in predicting its spread. We propose a mathematical model to evaluate the potential impact of four strategies: chemotherapy, awareness programs, the mechanical removal of snails and molluscicides, and the impact of a change in temperature on different molluscicide performances based on their half-lives and the length of time they persist in contact with target species. The results show that the recruitment rate of humans and the presence of cercaria and miracidia parasites are crucial factors in disease transmission. However, schistosomiasis can be entirely eradicated by combining all of the four strategies. In the face of climate change and molluscicide degradation, the results show that increasing the temperatures and the number of days a molluscicide persists in the environment before it completely degrades decreases the chemically induced mortality rate of snails while increasing the half-life of different molluscicides increases the death rate of snails. Therefore, eradicating schistosomiasis effectively necessitates a comprehensive integration of all preventative measures. Moreover, regions with different weather patterns and seasonal climates need strategies that have been adapted in terms of the appropriate molluscicide and time intervals for reapplication and effective schistosomiasis control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.