In this work, realizations of a dual function integrated modules are simply built by fixing the identical frequency selective surface (FSS) s into the apertures of the available exponentially tapered transverse electromagnetic (TEM) and ridged horn antennas. Both modules are confirmed experimentally to have functions of prefiltering suppressing EMI and noise when the signal is received, alongside the enhanced directivity in the desired band, thus these modules can be called as "Filtennas." A FSS is simply built by the properly designed periodic double anchor-shaped microstrip patches in CST microwave suit using low-cost FR4 with the relative permittivity 4.4, thickness 1.58 mm, loss tangent 0.0035. From the measured results, it can be found that the proposed modules keep mismatching characteristics of the horn antennas, meanwhile their gains and beamwidths are enhanced to amplify the signal in the desired band and simultaneously deteriorated to attenuate EMI and noise in the out-band. It is expected that this methodology can be implemented to effectively reduce volume and cost of communication systems. V C 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:287-293, 2016.
In this work, a dual‐band frequency selective surface (FSS) is proposed to be placed perpendicularly into the apertures of horn antennas for prefiltering 900 and 1800 MHz GSM signals interfering during the signal reception, with the enhanced return loss, gain, and directivity at the desired frequencies. For this purpose, the microstrip double square loop MDSL is modified in the first stage. As for the second stage, an FSS array (2 × 2) is built up arranging the unit MDSLs in a periodic structure and finally these FSS unit arrays are fixed perpendicularly covering the aperture of a ridged horn antenna which is a part of the available radar system operating between 0.5 and 3 GHz in our laboratory, to construct an integrated module having both bandstop prefilter and horn antenna called “filtenna.” The simulated and experimental results are agreed that the proposed FSS structure attenuates GSM signals at the 900 and 1800 MHz through the high reflection and very poor transmission mechanisms meanwhile enhances return loss characteristics, radiation pattern, and gain of the horn antenna in the desired band. Thus, it can be concluded that these simple microstrip FSS structure can be effectively adapted to the horn antennas which need the GSM prefiltering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.