The use of cytotoxic chemotherapic agents is the most common method for the treatment of metastatic cancers. Poor water solubility and low efficiency of chemotherapic agents are among the major hurdles of effective chemotherapy treatments. Curcumin and paclitaxel are well-known chemotherapic agents with poor water solubility and undesired side effects. In this study, a novel drug nanocarrier system was formulated by encapsulating curcumin and paclitaxel in poly(β-cyclodextrin triazine) (PCDT) for the therapy of four cancer models; ovarian, lung, prostate, and breast cancer. Cell viability and colony formation assays revealed enhanced curcumin cytotoxicity upon complexation. Annexin V apoptotic studies showed that the PCDT complexation improved curcumin induced apoptosis in human ovarian cancer cell lines A2780 and SKOV-3, human nonsmall cell lung carcinoma cell line H1299, and human prostate cancer line DU-145, while no significant effect was observed with paclitaxel/PCDT complexation. The bioactivity of combining curcumin and paclitaxel was also investigated. A synergism was found between curcumin and paclitaxel, particularly when complexed with PCDT on A2780, SKOV-3, and H1299 cancer cell lines.
The lack of sensitive and specific biomarkers for the early detection of mild cognitive impairment (MCI) and Alzheimer’s disease (AD) is a major hurdle to improving patient management. A targeted, quantitative metabolomics approach using both 1H NMR and mass spectrometry was employed to investigate the performance of urine metabolites as potential biomarkers for MCI and AD. Correlation-based feature selection (CFS) and least absolute shrinkage and selection operator (LASSO) methods were used to develop biomarker panels tested using support vector machine (SVM) and logistic regression models for diagnosis of each disease state. Metabolic changes were investigated to identify which biochemical pathways were perturbed as a direct result of MCI and AD in urine. Using SVM, we developed a model with 94% sensitivity, 78% specificity, and 78% AUC to distinguish healthy controls from AD sufferers. Using logistic regression, we developed a model with 85% sensitivity, 86% specificity, and an AUC of 82% for AD diagnosis as compared to cognitively healthy controls. Further, we identified 11 urinary metabolites that were significantly altered to include glucose, guanidinoacetate, urocanate, hippuric acid, cytosine, 2- and 3-hydroxyisovalerate, 2-ketoisovalerate, tryptophan, trimethylamine N oxide, and malonate in AD patients, which are also capable of diagnosing MCI, with a sensitivity value of 76%, specificity of 75%, and accuracy of 81% as compared to healthy controls. This pilot study suggests that urine metabolomics may be useful for developing a test capable of diagnosing and distinguishing MCI and AD from cognitively healthy controls.
Alzheimer’s disease (AD) is reported to be closely linked with abnormal lipid metabolism. To gain a more comprehensive understanding of what causes AD and its subsequent development, we profiled the lipidome of postmortem (PM) human brains (neocortex) of people with a range of AD pathology (Braak 0–6). Using high-resolution mass spectrometry, we employed a semi-targeted, fully quantitative lipidomics profiling method (Lipidyzer) to compare the biochemical profiles of brain tissues from persons with mild AD (n = 15) and severe AD (AD; n = 16), and compared them with age-matched, cognitively normal controls (n = 16). Univariate analysis revealed that the concentrations of 420 lipid metabolites significantly (p < 0.05; q < 0.05) differed between AD and controls. A total of 49 lipid metabolites differed between mild AD and controls, and 439 differed between severe AD and mild AD. Interestingly, 13 different subclasses of lipids were significantly perturbed, including neutral lipids, glycerolipids, glycerophospholipids, and sphingolipids. Diacylglycerol (DAG) (14:0/14:0), triacylglycerol (TAG) (58:10/FA20:5), and TAG (48:4/FA18:3) were the most notably altered lipids when AD and control brains were compared (p < 0.05). When we compare mild AD and control brains, phosphatidylethanolamine (PE) (p-18:0/18:1), phosphatidylserine (PS) (18:1/18:2), and PS (14:0/22:6) differed the most (p < 0.05). PE (p-18:0/18:1), DAG (14:0/14:0), and PS (18:1/20:4) were identified as the most significantly perturbed lipids when AD and mild AD brains were compared (p < 0.05). Our analysis provides the most extensive lipid profiling yet undertaken in AD brain tissue and reveals the cumulative perturbation of several lipid pathways with progressive disease pathology. Lipidomics has considerable potential for studying AD etiology and identifying early diagnostic biomarkers.
For people with Parkinson’s disease (PD), considered the most common neurodegenerative disease behind Alzheimer’s disease, accurate diagnosis is dependent on many factors; however, misdiagnosis is extremely common in the prodromal phases of the disease, when treatment is thought to be most effective. Currently, there are no robust biomarkers that aid in the early diagnosis of PD. Following previously reported work by our group, we accurately measured the concentrations of 18 bile acids in the serum of a prodromal mouse model of PD. We identified three bile acids at significantly different concentrations (p < 0.05) when mice representing a prodromal PD model were compared with controls. These include ω-murichoclic acid (MCAo), tauroursodeoxycholic acid (TUDCA) and ursodeoxycholic acid (UDCA). All were down-regulated in prodromal PD mice with TUDCA and UDCA at significantly lower levels (17-fold and 14-fold decrease, respectively). Using the concentration of three bile acids combined with logistic regression, we can discriminate between prodromal PD mice from control mice with high accuracy (AUC (95% CI) = 0.906 (0.777–1.000)) following cross validation. Our study highlights the need to investigate bile acids as potential biomarkers that predict PD and possibly reflect the progression of manifest PD.
Cerebral palsy (CP) is one of the most common causes of motor disability in childhood, with complex and heterogeneous etiopathophysiology and clinical presentation. Understanding the metabolic processes associated with the disease may aid in the discovery of preventive measures and therapy. Tissue samples (caudate nucleus) were obtained from post-mortem CP cases (n = 9) and age- and gender-matched control subjects (n = 11). We employed a targeted metabolomics approach using both 1H NMR and direct injection liquid chromatography-tandem mass spectrometry (DI/LC-MS/MS). We accurately identified and quantified 55 metabolites using 1H NMR and 186 using DI/LC-MS/MS. Among the 222 detected metabolites, 27 showed significant concentration changes between CP cases and controls. Glycerophospholipids and urea were the most commonly selected metabolites used to develop predictive models capable of discriminating between CP and controls. Metabolomics enrichment analysis identified folate, propanoate, and androgen/estrogen metabolism as the top three significantly perturbed pathways. We report for the first time the metabolomic profiling of post-mortem brain tissue from patients who died from cerebral palsy. These findings could help to further investigate the complex etiopathophysiology of CP while identifying predictive, central biomarkers of CP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.