Viral infections are being managed therapeutically through available antiviral regimens with unsatisfactory clinical outcomes. The refractory viral infections resistant to available antiviral drugs are alarming threats and a serious health concern. For viral hepatitis, the interferon and vaccine therapies solely are not ultimate solutions due to recurrence of hepatitis C virus. Owing to the growing incidences of viral infections and especially of resistant viral strains, the available therapeutic modalities need to be improved, complemented with the discovery of novel antiviral agents to combat refractory viral infections. It is widely accepted that medicinal plant heritage is nature gifted, precious, and fueled with the valuable resources for treatment of metabolic and infectious disorders. The aims of this review are to assemble the facts and to conclude the therapeutic potential of medicinal plants in the eradication and management of various viral diseases such as influenza, human immunodeficiency virus (HIV), herpes simplex virus (HSV), hepatitis, and coxsackievirus infections, which have been proven in diverse clinical studies. The articles, published in the English language since 1982 to 2017, were included from Web of Science, Cochrane Library, AMED, CISCOM, EMBASE, MEDLINE, Scopus, and PubMed by using relevant keywords including plants possessing antiviral activity, the antiviral effects of plants, and plants used in viral disorders. The scientific literature mainly focusing on plant extracts and herbal products with therapeutic efficacies against experimental models of influenza, HIV, HSV, hepatitis, and coxsackievirus were included in the study. Pure compounds possessing antiviral activity were excluded, and plants possessing activity against viruses other than viruses in inclusion criteria were excluded. Hundreds of plant extracts with antiviral effect were recognized. However, the data from only 36 families investigated through in vitro and in vivo studies met the inclusion criteria of this review. The inferences from scientific literature review, focusing on potential therapeutic consequences of medicinal plants on experimental models of HIV, HSV, influenza, hepatitis, and coxsackievirus have ascertained the curative antiviral potential of plants. Fifty-four medicinal plants belonging to 36 different families having antiviral potential were documented. Out of 54 plants, 27 individually belong to particular plant families. On the basis of the work of several independent research groups, the therapeutic potential of medicinal plants against listed common viral diseases in the region has been proclaimed. In this context, the herbal formulations as alternative medicine may contribute to the eradication of complicated viral infection significantly. The current review consolidates the data of the various medicinal plants, those are Sambucus nigra, Caesalpinia pulcherrima, and Hypericum connatum, holding promising specific antiviral activities scientifically proven through studies on experimental animal mo...
Naegleria fowleri, a thermophilic flagellate amoeba known as a “brain‐eating” amoeba, is the aetiological agent of a perilous and devastating waterborne disease known as primary amoebic meningoencephalitis (PAM), both in humans as well as in animals. PAM is a rare but fatal disease affecting young adults all around the world, particularly in the developed world but recently reported from developing countries, with 95%–99% mortality rate. Swimmers and divers are at high risk of PAM as the warm water is the most propitious environment adapted by N. fowleri to cause this infection. Infective amoeba in the trophozoite phase enter the victim's body through the nose, crossing the cribriform plate to reach the human brain and cause severe destruction of the central nervous system (CNS). The brain damage leads to brain haemorrhage and death occurs within 3–7 days in undiagnosed cases and maltreated cases. Though the exact pathogenesis of N. fowleri is still not known, it has exhibited two primary mechanisms, contact‐independent (brain damage through different proteins) and contact‐dependent (brain damage through surface structures food cups), that predominantly contribute to the pathogen invading the host CNS. For the management of this life‐threatening infection different treatment regimens have been applied but still the survival rate is only 5% which is ascribed to its misdiagnosis, as the PAM symptoms closely resembled bacterial meningitis. The main objectives of this review article are to compile data to explore the sources and routes of N. fowleri infection, its association in causing PAM along with its pathophysiology; latest techniques used for accurate diagnosis, management options along with challenges for Pakistan to control this drastic disorder.
Peach (Prunus persica L.), being a potential source of bioactive compounds, has been demonstrated to have medicinal benefits. In this study variation of minerals and antioxidant characteristics (total phenolic contents, total flavonoid contents, reducing power, inhibition of peroxidation using linoleic acid system and DPPH free radical scavenging activity) between peel and pulp parts of different peach varieties, namely Golden, Shireen, and Shahpasand were investigated. The peel and pulp extracts, derived from the varieties analyzed, exhibited an appreciable amount of total phenolics (TP) and total flavonoids (TF), ranging from 1,209.3–1,354.5, 711.7–881.3 mg GAE/100 g and 599.7–785.5, 301.3–499.7 mg CE/100 g on a dry weight basis, respectively. Reducing power of peel and pulp extracts (12.5 mg/mL concentration) ranged from 2.57–2.77 and 1.54–1.99. The inhibition of linoleic acid peroxidation and DPPH scavenging activity of the extracts varied from 70.8–80.9% and 66.8–76.5% in peels, and 51.9–60.1% and 43.4–49.1% in pulps. The mineral analysis revealed that the content of K was highest in both parts of the peach fruit followed by Mg, Ca, Fe, Mn and Zn. The results of our present study indicate that peach peel had significantly higher levels of minerals, antioxidant capacity and phenolics than those of the pulp, suggesting the intake of unpeeled peach as a potential source of high-value components. The peach peel can be a useful as a viable source of natural antioxidants for functional foods and nutraceutical applications.
BackgroundThe present study was conducted to evaluate the in vitro and in vivo antioxidant properties of aqueous extract of Podophyllum hexandrum. The antioxidant potential of the plant extract under in vitro situations was evaluated by using two separate methods, inhibition of superoxide radical and hydrogen peroxide radical. Carbon tetrachloride (CCl4) is a well known toxicant and exposure to this chemical is known to induce oxidative stress and causes tissue damage by the formation of free radicals.Methods36 albino rats were divided into six groups of 6 animals each, all animals were allowed food and water ad libitum. Group I (control) was given olive oil, while the rest groups were injected intraperitoneally with a single dose of CCl4 (1 ml/kg) as a 50% (v/v) solution in olive oil. Group II received CCl4 only. Group III animals received vitamin E at a concentration of 50 mg/kg body weight and animals of groups IV, V and VI were given extract of Podophyllum hexandrum at concentration dose of 20, 30 and 50 mg/kg body weight. Antioxidant status in both kidney and lung tissues were estimated by determining the activities of antioxidative enzymes, glutathione reductase (GR), glutathione peroxidase (GPX), glutathione-S-transferase (GST) and superoxide dismutase (SOD); as well as by determining the levels of reduced glutathione (GSH) and thiobarbituric acid reactive substances (TBARS). In addition, superoxide and hydrogen peroxide radical scavenging activity of the extract was also determined.ResultsResults showed that the extract possessed strong superoxide and hydrogen peroxide radical scavenging activity comparable to that of known antioxidant butylated hydroxy toluene (BHT). Our results also showed that CCl4 caused a marked increase in TBARS levels whereas GSH, SOD, GR, GPX and GST levels were decreased in kidney and lung tissue homogenates of CCl4 treated rats. Aqueous extract of Podophyllum hexandrum successfully prevented the alterations of these effects in the experimental animals.ConclusionOur study demonstrated that the aqueous extract of Podophyllum hexandrum could protect the kidney and lung tissue against CCl4 induced oxidative stress probably by increasing antioxidant defense activities.
Hantaviruses are enveloped negative (−) single-stranded RNA viruses belongs to Hantaviridae family, hosted by small rodents and entering into the human body through inhalation, causing haemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) also known as hantavirus cardiopulmonary syndrome (HCPS). Hantaviruses infect approximately more than 200 000 people annually all around the world and its mortality rate is about 35%-40%. Hantaviruses play significant role in affecting the target cells as these inhibit the apoptotic factor in these cells. These viruses impair the integrity of endothelial barrier due to an excessive innate immune response that is proposed to be central in the pathogenesis and is a hallmark of hantavirus disease. A wide range of different diagnostic tools including polymerase chain reaction (PCR), focus reduction neutralization test (FRNT), enzyme-linked immunosorbent assay (ELISA), immunoblot assay (IBA), immunofluorescence assay (IFA), and other molecular techniques are used as detection tools for hantavirus in the human body. Now the availability of therapeutic modalities is the major challenge to control this deadly virus because still no FDA approved drug or vaccine is available. Antiviral agents, DNA-based vaccines, polyclonal and monoclonal antibodies neutralized the viruses so these techniques are considered as the hope for the treatment of hantavirus disease. This review has been compiled to provide a comprehensive overview of hantaviruses disease, its pathophysiology, diagnostic tools and the treatment approaches to control the hantavirus infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.