Calcium hydroxide has been included within several materials and antimicrobial formulations that are used in a number of treatment modalities in endodontics. These include, inter-appointment intracanal medicaments, pulp-capping agents and root canal sealers. Calcium hydroxide formulations are also used during treatment of root perforations, root fractures and root resorption and have a role in dental traumatology, for example, following tooth avulsion and luxation injuries. The purpose of this paper is to review the properties and clinical applications of calcium hydroxide in endodontics and dental traumatology including its antibacterial activity, antifungal activity, effect on bacterial biofilms, the synergism between calcium hydroxide and other agents, its effects on the properties of dentine, the diffusion of hydroxyl ions through dentine and its toxicity. Pure calcium hydroxide paste has a high pH (approximately 12.5-12.8) and is classified chemically as a strong base. Its main actions are achieved through the ionic dissociation of Ca(2+) and OH(-) ions and their effect on vital tissues, the induction of hard-tissue deposition and the antibacterial properties. The lethal effects of calcium hydroxide on bacterial cells are probably due to protein denaturation and damage to DNA and cytoplasmic membranes. It has a wide range of antimicrobial activity against common endodontic pathogens but is less effective against Enterococcus faecalis and Candida albicans. Calcium hydroxide is also an effective anti-endotoxin agent. However, its effect on microbial biofilms is controversial.
Microorganisms and their by-products are considered to be the major cause of pulp and periradicular pathosis. Hence, a major objective in root canal treatment is to disinfect the entire root canal system, which requires that all contents of the root canal system be eliminated as possible sources of infection. This goal may be accomplished using mechanical instrumentation and chemical irrigation, in conjunction with medication of the root canal system between treatment sessions. To reduce or eliminate bacteria, various irrigation solutions have been advocated. Chlorhexidine is a cationic molecule, which can be used during treatment. It has a wide range of antimicrobial activity. Its cationic structure provides a unique property named substantivity. The purpose of this paper is to review the structure and mechanism of action of CHX, its antibacterial and antifungal activity, its effect on biofilm, its substantivity (residual antibacterial activity), its tissue solvent ability, its interaction with calcium hydroxide and sodium hypochlorite, its anticollagenolytic activity, its effect on coronal and apical leakage of bacteria, its toxicity and allergenicity and the modulating effect of dentine and root canal components on its antimicrobial activity. A Medline search was performed from 1981 to the end of March 2008 and was limited to English-language papers. The keywords searched on Medline were 'chlorhexidine AND endodontics', 'chlorhexidine AND root canal therapy', 'chlorhexidine AND substantivity' and 'chlorhexidine AND toxicity'. The reference lists of each article were manually checked for additional articles of relevance.
The major objective in root canal treatment is to disinfect the entire root canal system. This requires that the pulpal contents be eliminated as sources of infection. This goal may be accomplished using mechanical instrumentation and chemical irrigation, in conjunction with medication of the root canal between treatment sessions. Microorganisms and their by-products are considered to be the major cause of pulpal and periradicular pathosis. In order to reduce or eliminate bacteria and pulpal tissue remnants, various irrigation solutions have been suggested to be used during treatment. Sodium hypochlorite, an excellent non-specific proteolytic and antimicrobial agent, is the most common irrigation solution used during root canal therapy. The purpose of this paper was to review different aspects of sodium hypochlorite use in endodontics.
Calcium hydroxide is a multipurpose agent, and there have been an increasing number of indications for its use. Some of its indications include direct and indirect pulp capping, apexogenesis, apexification, treatment of; root resorption, iatrogenic root perforations, root fractures, replanted teeth and interappointment intracanal dressing. The purpose of this paper is to review the properties and various indications for the use of calcium hydroxide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.