Water is a fundamental requirement for human, animal, and plant survival. Despite its importance, quality water is not always fit for drinking, domestic and/or industrial use. Numerous factors such as industrialization, mining, pollution, and natural occurrences impact the quality of water, as they introduce or alter various parameters present therein, thus, affecting its suitability for human consumption or general use. The World Health Organization has guidelines which stipulate the threshold levels of various parameters present in water samples intended for consumption or irrigation. The Water Quality Index (WQI) and Irrigation WQI (IWQI) are metrics used to express the level of these parameters to determine the overall water quality. Collecting water samples from different sources, measuring the various parameters present, and bench-marking these measurements against pre-set standards, while adhering to various guidelines during transportation and measurement can be extremely daunting. To this end this study proposes a network architecture to collect data on water parameters in real-time and use machine learning (ML) tools to automatically determine suitability of water samples for drinking and irrigation purposes. The developed monitoring network is based on LoRa and takes the land topology into consideration. Results of simulations done in Radio Mobile revealed a partial mesh network topology as the most adequate. Due to the absence of large and open datasets on drinking and irrigation water, datasets usable for training ML models were developed. Three ML models -Random Forest (RF), Logistic Regression (LR) and Support Vector Machine (SVM) were considered for the water classification and results obtained showed that LR performed best for drinking water, while SVM was better suited for irrigation water. Recursive feature elimination was then combined with the three ML models to reveal which of the water parameters had the greatest influence on the classification accuracies of the respective model.
Big data analytics (BDA) is a novel concept focusing on leveraging large volumes of heterogeneous data through advanced analytics to drive information discovery. This paper aims to highlight the potential role BDA can play to improve groundwater management in the Southern African Development Community (SADC) region in Africa. Through a review of the literature, this paper defines the concepts of big data, big data sources in groundwater, big data analytics, big data platforms and framework and how they can be used to support groundwater management in the SADC region. BDA may support groundwater management in SADC region by filling in data gaps and transforming these data into useful information. In recent times, machine learning and artificial intelligence have stood out as a novel tool for data-driven modeling. Managing big data from collection to information delivery requires critical application of selected tools, techniques and methods. Hence, in this paper we present a conceptual framework that can be used to manage the implementation of BDA in a groundwater management context. Then, we highlight challenges limiting the application of BDA which included technological constraints and institutional barriers. In conclusion, the paper shows that sufficient big data exist in groundwater domain and that BDA exists to be used in groundwater sciences thereby providing the basis to further explore data-driven sciences in groundwater management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.