Electricity usage of buildings (including offices, malls, and residential apartments) represents a significant portion of a nation's energy expenditure and carbon footprint. In the United States, the buildings' appliances consume 72% of the total produced electricity approximately. In this regard, cyber‐physical system (CPS) researchers have put forth associated research questions to reduce cyber‐physical building environment energy consumption by minimizing the energy dissipation while securing occupants' comfort. Some of the questions in CPS building include finding the optimal HVAC control, monitoring appliances' energy usage, detecting insulation problems, estimating the occupants' number and activities, managing thermal comfort, intelligently interacting with the smart grid. Various machine learning (ML) applications have been studied in recent CPS researches to improve building energy efficiency by addressing these questions. In this paper, we comprehensively review and report on the contemporary applications of ML algorithms such as deep learning, transfer learning, active learning, reinforcement learning, and other emerging techniques that propose and envision to address the above challenges in the CPS building environment. Finally, we conclude this article by discussing diverse existing open questions and prospective future directions in the CPS building environment research.This article is categorized under:
Technologies > Machine Learning
Technologies > Reinforcement Learning
In warehouses, specialized agents need to navigate, avoid obstacles and maximize the use of space in the warehouse environment. Due to the unpredictability of these environments, reinforcement learning approaches can be applied to complete these tasks. In this paper, we propose using Deep Reinforcement Learning (DRL) to address the robot navigation and obstacle avoidance problem and traditional Q-learning with minor variations to maximize the use of space for product placement. We first investigate the problem for the single robot case. Next, based on the single robot model, we extend our system to the multi-robot case. We use a strategic variation of Q-tables to perform multi-agent Q-learning. We successfully test the performance of our model in a 2D simulation environment for both the single and multi-robot cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.