PurposeMany anticancer drugs induce apoptosis in malignant cells, and resistance to apoptosis could lead to suboptimal or no therapeutic benefit. Two cytoplasmic proteins, B-cell lymphoma protein 2 (Bcl-2)-associated X (Bax) and Bcl-2, act as a promoter and an inhibitor of apoptosis, respectively. Both Bax and Bcl-2 as well as their ratio have been regarded as prognostic markers in various cancers. However, conflicting results have been reported. A clear understanding of apoptosis has also become crucial due to reports about anti-Bcl-2 chemotherapy. We explored the relationship of Bax and Bcl-2 gene expression and their ratio with the therapeutic response in acute myeloid leukemia (AML) patients.Patients and methodsBone marrow and/or blood samples from 90 AML patients treated with cytarabine and daunorubicin were included. Expression of Bax and Bcl-2 was determined through real-time polymerase chain reaction by using ΔΔCt method of relative expression.ResultsBax and Bcl-2 expression among marrow and blood samples correlated with each other (rs=0.5, p<0.01). Although bone marrow expression of Bax and Bcl-2 tended to remain higher among responders (median 1.01 and 0.29, respectively) as compared to non-responders (median 0.66 and 0.24, respectively), the difference failed to reach statistical significance (U=784.5 and 733; p=0.68 and 0.28, respectively). Conversely, Bax/Bcl-2 ratio was higher among poor responders (median 3.07 vs 1.78), though again failed to reach statistical significance (U=698.5, p=0.07).ConclusionExpression of Bax and Bcl-2 does not differ significantly among AML patients treated with cytarabine and daunorubicin in terms of remission, relapse, resistance, overall survival, and disease-free survival, thus questioning the utility of emerging anti-Bcl-2 therapy.
Diabetes mellitus is one of the most common serious metabolic disorders in humans that develops due to diminished production of insulin (type I) or resistance to its effect (type II and gestational). The present study was designed to determine the neuropsychological deficits produced following streptozotocin-induced diabetes in rats. Rats were made diabetic by the intra-peritoneal administration of 60 mg/kg streptozotocin (STZ) which induces type-1 diabetes by the destruction "β-cells" of pancreas. Body weight, food and water intake was monitored daily. Open field test (OFT) model, forced swim test (FST) and Morris water maze (MWM) model were performed for the evaluation of ambulation, depression-like symptoms and memory effects, respectively. After 10 days of diabetes induction the exploratory activity of rats was monitored by OFT while depression-like symptoms and memory effects in rats were analyzed by FST and MWM. Results showed that there was no significant effect of STZ-induced diabetes on body weight but food and water intake of STZ-induced diabetic rats was significantly increased. Exploratory activity was significantly decreased and short-term and long-term memory was significantly impaired while the depression-like symptoms was significantly increased in STZ diabetic rats. Thus, it may be suggested that STZ-induced diabetes alters the brain functions and may play an important role in the pathophysiology of certain behavioral deficits like depression, impaired learning and memory functions related to diabetes. This finding may be of relevance in the pathophysiology and in the clinical picture, which could be related to an altered brain serotonin metabolism and neurotransmission and may possibly be related to neuropsychiatric disorders in diabetic patients.
Objective:To determine pathogen burden and susceptibility pattern of multi-drug resistant (MDR) Pseudomonas aeruginosa isolates from clinical specimens in Karachi.Methods:It was In-vitro Clinical study, conducted in department of Pharmacology, Ziauddin University, and isolates were collected from various specimens such as pus, tracheal aspiration, wound swab, blood and urine in Microbiology department of Ziauddin Hospital, Nazimabad campus, Karachi. The antibiotic susceptibility pattern was determined by Kirby Bauer Disc diffusion method. Samples were processed as per procedures defined by Clinical and Laboratory Standards Institute (CLSI) guidelines 2018.Results:About 55% were found to be multi drug resistant P. aeruginosa. Majority of the isolates (35.4%) were recovered from the age range 60-80 years. Maximum number of MDR P. aeruginosa was isolated from pus (33.1%) followed by tracheal aspiration (20.6%). Highest sensitivity was seen by colistin (100%) followed by ceftolozane/tazobactam (60%). Least sensitivity was observed with imipenem (19%). However, increase trend of resistance was seen among all antipesudomonal drugs.Conclusion:Increasing frequency of infections due to MDR P. aeruginosa is an emerging threat in our set up which can be prevented by prescribing antibiotics judiciously. Consistent lab detection and surveillance regarding this resistant pathogen is compulsory for providing effective health care to community.
Objective:To isolate, determine the frequency, and study the demographic trends of MBL positive Pseudomonas aeruginosa from imipenem resistant isolates collected from clinical samples in a tertiary care hospital of Pakistan.Methods:In this cross sectional study a total of 230 strains of Pseudomonas were isolated from various clinical specimens on the basis of culture and biochemical tests. Imipenem resistant isolates were selected by Kirby Bauer Diffusion technique, followed by screening for MBL production by Imipenem EDTA Combined Disk Test. Demographic details of each patient were recorded on a separate questionnaire. Chi-Square goodness-of-fit test was computed to review the isolation of MBL positive isolates (P-value ≤ 0.05) in different specimen.Results:Out of 230 strains of P. aeruginosa 49.5% were imipenem resistant; MBL production was confirmed in 64.9% of the resistant isolates. Resistance to polymyxin B (12.5%) was notable. Majority of the MBL positive strains were isolated from patients aged between 20-39 years (45.9%) and the predominant source was pus (43.24%) which was found to be statistically significant (P-value=0.04). Outpatient departments (24.3%) and burn unit (21.6%) were the major places for resistant isolates.Conclusion:MBL production is one of the major causes of IRPA. Increasing resistance to polymyxin B is grave. Due to acquisition of MBL strains MDR P. aeruginosa has become endemic in tertiary setups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.