This paper presents an efficient approach for solving the optimal reactive power dispatch problem. It is a non-linear constrained optimization problem where two distinct objective functions are considered. The proposed approach is based on the hybridization of the particle swarm optimization method and the tabu-search technique. This hybrid approach is used to find control variable settings (i.e., generation bus voltages, transformer taps and shunt capacitor sizes) which minimize transmission active power losses and load bus voltage deviations. To validate the proposed hybrid method, the IEEE 30-bus system is considered for 12 and 19 control variables. The obtained results are compared with those obtained by particle swarm optimization and a tabu-search without hybridization and with other evolutionary algorithms reported in the literature.
This paper presents a new approach to solve the optimal reactive power dispatch (ORPD) problem based on hybridizing Particle Swarm Optimization (PSO) and TabuSearch (TS) meta-heuristics (PSO-TS). The ORPD problem is formulated as a nonlinear constrained single-objective optimization problem where the real power loss is to be minimized. The proposed approach is used to find the settings of the control variables such as generator voltages, tap positions of tap changing transformers and the amount of reactive compensation devices, to optimize power transmission loss. The study was implemented on IEEE 30-bus systems, and the results were compared with non-hybridized PSO and TS and other evolutionary algorithms reported in the literature.
This paper presents the design and application of an efficient hybrid algorithm for solving the Optimal Reactive Power Flow (ORPF) problem. The ORPF is formulated as a nonlinear constrained optimization problem where the active power losses must be minimized. The proposed approach is based on the hybridization of Particle Swarm Optimization (PSO) and Tabu-Search (TS) technique. The proposed PSO-TS approach is used to find the settings of the control variables (i.e. generation bus voltages, transformer taps, and shunt capacitor sizes) which minimize transmission active power losses. The bus locations of the shunt capacitors are identified according to sensitive buses. To show the effectiveness of the proposed method, it is applied to the IEEE 30 bus benchmark test system and is compared with PSO and TS without hybridization, along with some other published approaches. The obtained results reveal the effectiveness of the proposed method in dealing with the highly nonlinear constrained nature of the ORPF problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.