We consider a certain class of nonlinear maps that preserve the probability simplex, i.e., stochastic maps, that are inspired by the DeGroot-Friedkin model of belief/opinion propagation over influence networks. The corresponding dynamical models describe the evolution of the probability distribution of interacting species. Such models where the probability transition mechanism depends nonlinearly on the current state are often referred to as nonlinear Markov chains. In this paper we develop stability results and study the behavior of representative opinion models. The stability certificates are based on the contractivity of the nonlinear evolution in the 1 -metric. We apply the theory to two types of opinion models where the adaptation of the transition probabilities to the current state is exponential and linear, respectively-both of these can display a wide range of behaviors. We discuss continuous-time and other generalizations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.