Inkjet technology as a maskless, direct-writing technology offers the potential for structured deposition of functional materials for the realization of electrodes for, e.g., sensing applications. In this work, electrodes were realized by inkjet-printing of commercial nanoparticle gold ink on planar substrates and, for the first time, onto the 2.5D surfaces of a 0.5 mm-deep microfluidic chamber produced in cyclic olefin copolymer (COC). The challenges of a poor wetting behavior and a low process temperature of the COC used were solved by a pretreatment with oxygen plasma and the combination of thermal (130 • C for 1 h) and photonic (955 mJ/cm 2 ) steps for sintering. By performing the photonic curing, the resistance could be reduced by about 50% to 22.7 µΩ cm. The printed gold structures were mechanically stable (optimal cross-cut value) and porous (roughness factors between 8.6 and 24.4 for 3 and 9 inkjet-printed layers, respectively). Thiolated DNA probes were immobilized throughout the porous structure without the necessity of a surface activation step. Hybridization of labeled DNA probes resulted in specific signals comparable to signals on commercial screen-printed electrodes and could be reproduced after regeneration. The process described may facilitate the integration of electrodes in 2.5D lab-on-a-chip systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.