Expression of master transcriptional regulators of stem cells (Oct4 and Sox2) is associated with mediating tumor proliferation and tumor differentiation. The main goal of this study is the investigation of specific binding of designed Oct4-Sox2 transcription factors decoy oligodeoxynucleotides (ODNs) sequence to their nucleusextracted proteins in HT29-ShE cells containing enriched cancer stem-like cells (SCLCs). First, gene expression of Oct4, Sox2, and E-cadherin revealed the overexpression of Oct4 and Sox2 and downregulation of E-cadherin in HT29-ShE cells compared with HT29 wild-type and HT29-ShC cells. Next, Oct4-Sox2 complex decoy ODNs were designed according to their elements in the promoter region of Sox2 gene. Then, the interactions of Oct4 and Sox2 proteins to designed ODNs were evaluated in silico. Finally, DNA-protein interactions of decoy ODNs and their corresponding proteins were examined by electrophoretic mobility shift assay (EMSA). Analysis of gel shift retardation assay admitted the specific binding of designed ODNs sequence to the nuclear extracted Oct4 and Sox2 proteins. The results will be a promising approach to target cancer stem cells for potential use in differentiation therapy before chemotherapy and radiotherapy of cancers. K E Y W O R D S cancer stem-like cells, cancer therapy, decoy ODNs, epithelial-mesenchymal transition, homology modeling, molecular docking
Signal transducer and activator of transcription 3 (STAT3) is a critical regulator for angiogenesis, cell cycle progression, apoptosis, and drug resistance. Resistance toward EGF receptor (EGFR) inhibitors is a significant clinical concern for metastatic colon cancer patients. The present study aimed to evaluate the blocking influences of STAT3 decoy oligodeoxynucleotides (ODNs) on the STAT3 survival signaling pathway in nonresistant and erlotinib‐resistant SW480 colon cancer cells. First, STAT3 decoy and scramble ODNs were designed according to STAT3 elements in the promoter region of MYCT1 gene and tested for the interaction of STAT3 protein with designed ODNs via in silico molecular docking study. Then, the efficiency of transfection and subcellular localization of ODNs were assessed using flow cytometry and fluorescence microscopy, respectively. Cell viability, cell cycle, and apoptosis tests, scratch and colony formation assays, and real‐time PCR were also used to study the cancerous properties of cells. A considerable decrease in proliferation of colon cancer cells was observed with blockade of STAT3 signaling due to cell cycle arrest and induced apoptosis via downregulation of cyclin D1 and Bcl‐XL, respectively. Furthermore, upon transfecting STAT3 decoy ODNs, colony formation potential and migration activity in both SW480 colon cancer cell lines were decreased compared to the control groups. From this study, it could be concluded that STAT3 is critical for cell growth inhibition and metastatic properties reduction of resistant SW480 colon cancer cells; therefore, STAT3 decoy ODNs could be considered as potential therapeutics along with current remedies for treating drug‐resistant colon cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.