Video nailfold capillaroscopy (NFC), considered as an extension of the widefield technique, allows a more accurate measuring and storing of capillary data and a better defining, analyzing, and quantifying of capillary abnormalities. Capillaroscopic study is often performed on the patients suspected of having microcirculation problems such as Raynaud's phenomenon as the main indication for nailfold capillaroscopy. Capillaroscopic findings based on microcirculation studies can provide useful information in the fields of pathophysiology, differential diagnosis, and monitoring therapy. Nailfold capillaroscopy provides a vital assessment in clinical practices and research; for example, its reputation in the early diagnosis of systemic sclerosis is well established and it is also used as a classification criterion in this regard. This review focuses on the manner of performing video nailfold capillaroscopy and on a common approach for measuring capillary dimensions in fingers and toes.
Early detection of breast tumors, feet pre-ulcers diagnosing in diabetic patients, and identifying the location of pain in patients are essential to physicians. Hot or cold regions in medical thermographic images have potential to be suspicious. Hence extracting the hottest or coldest regions in the body thermographic images is an important task. Lazy snapping is an interactive image cutout algorithm that can be applied to extract the hottest or coldest regions in the body thermographic images quickly with easy detailed adjustment. The most important advantage of this technique is that it can provide the results for physicians in real time readily. In other words, it is a good interactive image segmentation algorithm since it has two basic characteristics: (1) the algorithm produces intuitive segmentation that reflects the user intent with given a certain user input and (2) the algorithm is efficient enough to provide instant visual feedback. Comparing to other methods used by the authors for segmentation of breast thermograms such as K-means, fuzzy c-means, level set, and mean shift algorithms, lazy snapping was more user-friendly and could provide instant visual feedback. In this study, twelve test cases were presented and by applying lazy snapping algorithm, the hottest or coldest regions were extracted from the corresponding body thermographic images. The time taken to see the results varied from 7 to 30 s for these twelve cases. It was concluded that lazy snapping was much faster than other methods applied by the authors such as K-means, fuzzy c-means, level set, and mean shift algorithms for segmentation. Graphical abstract Time taken to implement lazy snapping algorithm to extract suspicious regions in different presented thermograms (in seconds). In this study, ten test cases are presented that by applying lazy snapping algorithm, the hottest or coldest regions were extracted from the corresponding body thermographic images. The time taken to see the results varied from 7 to 30 s for the ten cases. It concludes lazy snapping is much faster than other methods applied by the authors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.