Précis: We developed a deep learning-based classifier that can discriminate primary angle closure suspects (PACS), primary angle closure (PAC)/primary angle closure glaucoma (PACG), and also control eyes with open angle with acceptable accuracy. Purpose: To develop a deep learning-based classifier for differentiating subtypes of primary angle closure disease, including PACS and PAC/PACG, and also normal control eyes. Materials and Methods: Anterior segment optical coherence tomography images were used for analysis with 5 different networks including MnasNet, MobileNet, ResNet18, ResNet50, and EfficientNet. The data set was split with randomization performed at the patient level into a training plus validation set (85%), and a test data set (15%). Then 4-fold cross-validation was used to train the model. In each mentioned architecture, the networks were trained with original and cropped images. Also, the analyses were carried out for single images and images grouped on the patient level (case-based). Then majority voting was applied to the determination of the final prediction. Results: A total of 1616 images of normal eyes (87 eyes), 1055 images of PACS (66 eyes), and 1076 images of PAC/PACG (66 eyes) eyes were included in the analysis. The mean ± SD age was 51.76 ± 15.15 years and 48.3% were males. MobileNet had the best performance in the model, in which both original and cropped images were used. The accuracy of MobileNet for detecting normal, PACS, and PAC/PACG eyes was 0.99 ± 0.00, 0.77 ± 0.02, and 0.77 ± 0.03, respectively. By running MobileNet in a case-based classification approach, the accuracy improved and reached 0.95 ± 0.03, 0.83 ± 0.06, and 0.81 ± 0.05, respectively. For detecting the open angle, PACS, and PAC/PACG, the MobileNet classifier achieved an area under the curve of 1, 0.906, and 0.872, respectively, on the test data set. Conclusion: The MobileNet-based classifier can detect normal, PACS, and PAC/PACG eyes with acceptable accuracy based on anterior segment optical coherence tomography images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.