Abstract-Here we propose a simplified model for the path planning of an Autonomous Under Vehicle (AUV) in an horizontal plane when ocean currents are considered. The model includes kinetic equations and a simple dynamic equation. Our problem of interest is a minimum time problem with state constraints where the control appears linearly. This problem is solved numerically using the direct method. We extract various tests from the Maximum Principle that are then used to validate the numerical solution. In contrast to many other literature we apply the Maximum Principle as defined in [9].
Generally, energy management in smart buildings is formulated by mixed-integer linear programming, with different optimization goals. The most targeted goals are the minimization of the electricity consumption cost, the electricity consumption value from external power grid, and peak load smoothing. All of these objectives are desirable in a smart building, however, in most of the related works, just one of these mentioned goals is considered and investigated. In this work, authors aim to consider two goals via a multi-objective framework. In this regard, a multi-objective mixed-binary linear programming is presented to minimize the total energy consumption cost and peak load in collective residential buildings, considering the scheduling of the charging/discharging process for electric vehicles and battery energy storage system. Then, the Pascoletti-Serafini scalarization approach is used to obtain the Pareto front solutions of the presented multi-objective model. In the final, the performance of the proposed model is analyzed and reported by simulating the model under two different scenarios. The results show that the total consumption cost of the residential building has been reduced 35.56% and the peak load has a 45.52% reduction.
Efficient alternatives in energy production and consumption are constantly being investigated and conducted by increasingly strict policies. Buildings have a significant influence on electricity consumption, and their management may contribute to the sustainability of the electricity sector. Additionally, with growing incentives in the distributed generation (DG) and electric vehicle (EV) industries, it is believed that smart buildings (SBs) can play a key role in sustainability goals. In this work, an energy management system is developed to reduce the power demands of a residential building, considering the flexibility of the contracted power of each apartment. In order to balance the demand and supply, the electrical power provided by the external grid is supplemented by microgrids such as battery energy storage systems (BESS), EVs, and photovoltaic (PV) generation panels. Here, a mixed binary linear programming formulation (MBLP) is proposed to optimize the scheduling of the EVs charge and discharge processes and also those of BESS, in which the binary decision variables represent the charging and discharging of EVs/BESS in each period. In order to show the efficiency of the model, a case study involving three scenarios and an economic analysis are considered. The results point to a 65% reduction in peak load consumption supplied by an external power grid and a 28.4% reduction in electricity consumption costs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.