Hardware accelerators are being increasingly deployed to boost the performance and energy efficiency of deep neural network (DNN) inference. In this paper we propose Thundervolt, a new framework that enables aggressive voltage underscaling of high-performance DNN accelerators without compromising classification accuracy even in the presence of high timing error rates. Using post-synthesis timing simulations of a DNN accelerator modeled on the Google TPU, we show that Thundervolt enables between 34%-57% energy savings on stateof-the-art speech and image recognition benchmarks with less than 1% loss in classification accuracy and no performance loss. Further, we show that Thundervolt is synergistic with and can further increase the energy efficiency of commonly used run-time DNN pruning techniques like Zero-Skip.
The emergence of deep learning has been accompanied by privacy concerns surrounding users' data and service providers' models. We focus on private inference (PI), where the goal is to perform inference on a user's data sample using a service provider's model. Existing PI methods for deep networks enable cryptographically secure inference with little drop in functionality; however, they incur severe latency costs, primarily caused by non-linear network operations (such as ReLUs). This paper presents SPHYNX, a ReLU-efficient network design method based on micro-search strategies for convolutional cell design. SPHYNX achieves Pareto dominance over all existing private inference methods on CIFAR-100. We also design large-scale networks that support cryptographically private inference on Tiny-ImageNet and ImageNet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.