Nanotechnology has shown many advantages in different fields. As the uses of nanotechnology have progressed, it has been found to be a promising technology for the food packaging industry in the global market. It has proven capabilities that are valuable in packaging foods, including improved barriers; mechanical, thermal, and biodegradable properties; and applications in active and intelligent food packaging. Examples of the latter are anti-microbial agents and nanosensors, respectively. However, the use of nanocomposites in food packaging might be challenging due to the reduced particle size of nanomaterials and the fact that the chemical and physical characteristics of such tiny materials may be quite different from those of their macro-scale counterparts. In order to discuss the potential risks of nanoparticles for consumers, in addition to the quantification of data, a thorough investigation of their characteristics is required. Migration studies must be conducted to determine the amounts of nanomaterials released into the food matrices. In this article, different applications of nanocomposites in food packaging, migration issues, analyzing techniques, and the main concerns about their usage are discussed briefly.
Currently, bioactive compounds are required in the design and production of functional foods, with the aim of improving the health status of consumers all around the world. Various epidemiological and clinical studies have demonstrated the salutary role of eicosapentaenoic acid (EPA, 22:6 n−3) and docosahexaenoic acid (DHA, 22:5 n−3) in preventing diseases and reducing mortality from cardiovascular diseases. The unsaturated nature of bioactive lipids leads to susceptibility to oxidation under environmental conditions. Oxidative deterioration of omega-3 fatty acids can cause the reduction in their nutritional quality and sensory properties. Encapsulation of these fatty acids could create a barrier against reaction with harmful environmental factors. Currently, fortification of foods containing bioactive omega-3 fatty acids has found great application in the food industries of different countries. Previous studies have suggested that nano-encapsulation has significant effects on the stability of physical and chemical properties of bioactive compounds. Considering the functional role of omega-3 fatty acids, this study has provided a literature review on applications of nanoliposomal delivery systems for encapsulation of these bioactive compounds.
In the present study, Lactobacillus acidophilus LA-5 was microencapsulated in sodium alginate, followed by fish gelatin coating (0.5, 1.5, and 3%). The survival of L. acidophilus in bread before and after encapsulation in alginate/fish gelatin during the baking and 7-day storage was investigated. Moreover, the effect of alginate/fish gelatin-encapsulated L. acidophilus on the technological properties of bread (hardness, staling rate, water content, oven spring, specific volume, and internal texture structure) was evaluated. Compared with control (free bacteria), encapsulated L. acidophilus in alginate/fish gelatin showed an increase in the viability of bread until 2.49 and 3.07 log CFU/g during baking and storage, respectively. Good viability of (106 CFU/g) for probiotic in encapsulated L. acidophilus in alginate/fish gelatin (1.5 and 3%, respectively) after 4-day storage was achieved. Fish gelatin as a second-layer carrier of the bacteria had a positive effect on improving the technical quality of bread. Furthermore, the staling rate of bread containing encapsulated L. acidophilus alginate/fish gelatin 0.5, 1.5, and 3% decreased by 19.5, 25.8, and 31.7%, respectively. Overall, the findings suggested encapsulation of L. acidophilus in alginate/fish gelatin capsule had great potential to improve probiotic bacteria’s survival during baking and storage and to serve as an effective bread enhancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.