Heat pumps will play a key role in transitioning domestic heating to fossil-free sources. However, improvement in energy efficiency and cost reduction are still needed. Current vapour-compression heat pumps are built upon the Evans-Perkins cycle which was originally designed for refrigeration applications. Once hot liquid refrigerant has transferred energy to the central heating system, it leaves the condenser with sensible heat which can be utilized. Here we report a modified and flexible Evans-Perkins heat pump cycle integrating heat recovery and storage which is then used as an ancillary heat source for the heat pump’s operation. It operates in a quasi-two-stage mode to theoretically save up to 20% in compressor power consumption compared with single-stage cycles. We build a prototype with off-the-shelf parts and demonstrate a practical 3.7% power saving at a heat production temperature of 35 °C. Power saving will further increase with heat supply temperature. We also qualitatively show that hot refrigerant exiting the condenser can be directly used for defrosting the evaporator, providing additional energy saving.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.