Crying is the only means of communication for a newborn baby with its surrounding environment, but it also provides significant information about the newborn’s health, emotions, and needs. The cries of newborn babies have long been known as a biomarker for the diagnosis of pathologies. However, to the best of our knowledge, exploring the discrimination of two pathology groups by means of cry signals is unprecedented. Therefore, this study aimed to identify septic newborns with Neonatal Respiratory Distress Syndrome (RDS) by employing the Machine Learning (ML) methods of Multilayer Perceptron (MLP) and Support Vector Machine (SVM). Furthermore, the cry signal was analyzed from the following two different perspectives: 1) the musical perspective by studying the spectral feature set of Harmonic Ratio (HR), and 2) the speech processing perspective using the short-term feature set of Gammatone Frequency Cepstral Coefficients (GFCCs). In order to assess the role of employing features from both short-term and spectral modalities in distinguishing the two pathology groups, they were fused in one feature set named the combined features. The hyperparameters (HPs) of the implemented ML approaches were fine-tuned to fit each experiment. Finally, by normalizing and fusing the features originating from the two modalities, the overall performance of the proposed design was improved across all evaluation measures, achieving accuracies of 92.49% and 95.3% by the MLP and SVM classifiers, respectively. The MLP classifier was outperformed in terms of all evaluation measures presented in this study, except for the Area Under Curve of Receiver Operator Characteristics (AUC-ROC), which signifies the ability of the proposed design in class separation. The achieved results highlighted the role of combining features from different levels and modalities for a more powerful analysis of the cry signals, as well as including a neural network (NN)-based classifier. Consequently, attaining a 95.3% accuracy for the separation of two entangled pathology groups of RDS and sepsis elucidated the promising potential for further studies with larger datasets and more pathology groups.
The acoustic characteristics of cries are an exhibition of an infant’s health condition and these characteristics have been acknowledged as indicators for various pathologies. This study focused on the detection of infants suffering from sepsis by developing a simplified design using acoustic features and conventional classifiers. The features for the proposed framework were Mel-frequency Cepstral Coefficients (MFCC), Spectral Entropy Cepstral Coefficients (SENCC) and Spectral Centroid Cepstral Coefficients (SCCC), which were classified through K-nearest Neighborhood (KNN) and Support Vector Machine (SVM) classification methods. The performance of the different combinations of the feature sets was also evaluated based on several measures such as accuracy, F1-score and Matthews Correlation Coefficient (MCC). Bayesian Hyperparameter Optimization (BHPO) was employed to tailor the classifiers uniquely to fit each experiment. The proposed methodology was tested on two datasets of expiratory cries (EXP) and voiced inspiratory cries (INSV). The highest accuracy and F-score were 89.99% and 89.70%, respectively. This framework also implemented a novel feature selection method based on Fuzzy Entropy (FE) as a final experiment. By employing FE, the number of features was reduced by more than 40%, whereas the evaluation measures were not hindered for the EXP dataset and were even enhanced for the INSV dataset. Therefore, it was deduced through these experiments that an entropy-based framework is successful for identifying sepsis in neonates and has the advantage of achieving high performance with conventional machine learning (ML) approaches, which makes it a reliable means for the early diagnosis of sepsis in deprived areas of the world.
Crying is one of the means of communication for a newborn. Newborn cry signals convey precious information about the newborn’s health condition and their emotions. In this study, cry signals of healthy and pathologic newborns were analyzed for the purpose of developing an automatic, non-invasive, and comprehensive Newborn Cry Diagnostic System (NCDS) that identifies pathologic newborns from healthy infants. For this purpose, Mel-frequency Cepstral Coefficients (MFCC) and Gammatone Frequency Cepstral Coefficients (GFCC) were extracted as features. These feature sets were also combined and fused through Canonical Correlation Analysis (CCA), which provides a novel manipulation of the features that have not yet been explored in the literature on NCDS designs, to the best of our knowledge. All the mentioned feature sets were fed to the Support Vector Machine (SVM) and Long Short-term Memory (LSTM). Furthermore, two Hyperparameter optimization methods, Bayesian and grid search, were examined to enhance the system’s performance. The performance of our proposed NCDS was evaluated with two different datasets of inspiratory and expiratory cries. The CCA fusion feature set using the LSTM classifier accomplished the best F-score in the study, with 99.86% for the inspiratory cry dataset. The best F-score regarding the expiratory cry dataset, 99.44%, belonged to the GFCC feature set employing the LSTM classifier. These experiments suggest the high potential and value of using the newborn cry signals in the detection of pathologies. The framework proposed in this study can be implemented as an early diagnostic tool for clinical studies and help in the identification of pathologic newborns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.