Macrophages are the most abundant cells within the tumor stroma displaying noticeable plasticity, which allows them to perform several functions within the tumor microenvironment. Tumor-associated macrophages commonly refer to an alternative M2 phenotype, exhibiting anti-inflammatory and pro-tumoral effects. M2 cells are highly versatile and multi-tasking cells that directly influence multiple steps in tumor development, including cancer cell survival, proliferation, stemness, and invasiveness along with angiogenesis and immunosuppression. M2 cells perform these functions through critical interactions with cells related to tumor progression, including Th2 cells, cancer-associated fibroblasts, cancer cells, regulatory T cells (Tregs), and myeloid-derived suppressor cells. M2 cells also have negative cross-talks with tumor suppressor cells, including cytotoxic T cells and natural killer cells. Programed death-1 (PD-1) is one of the key receptors expressed in M2 cells that, upon interaction with its ligand PD-L1, plays cardinal roles for induction of immune evasion in cancer cells. In addition, M2 cells can neutralize the effects of the pro-inflammatory and anti-tumor M1 phenotype. Classically activated M1 cells express high levels of major histocompatibility complex molecules, and the cells are strong killers of cancer cells. Therefore, orchestrating M2 reprogramming toward an M1 phenotype would offer a promising approach for reversing the fate of tumor and promoting cancer regression. Macrophage switching toward an anti-inflammatory M1 phenotype could be used as an adjuvant with other approaches, including radiotherapy and immune checkpoint blockades, such as anti-PD-L1/PD-1 strategies.
Spinal cord injury (SCI) is a common devastating condition that causes neuronal loss and dysfunction. Neuroinflammation takes cardinal roles in the pathogenesis of SCI, and nucleotide‐binding domain‐like receptor protein 3 (NLRP3) inflammasome is a mediator of inflammatory reactions occurring in SCI patients. The present study was designed to survey possible relation between thoracic segments whereby injury occurs with the activity of NLRP3 inflammasome complex, and to find the influence of hormonal therapy on the outcomes. Adult male Wistar rats underwent contusion SCI model at three different thoracic segments T1, T6 and T12, then receiving subcutaneous injection of either 10 mg/kg melatonin or 25 μg/kg 17‐β estradiol (E2) every 12 hours until 72 hours post‐SCI. Inflammasome activity was assessed before and at the end of hormonal therapy. SCI rats showed decreased locomotor activity and myelination, and increased activity of the NLRP3, apoptosis‐associated speck‐like protein (ASC) and caspase‐1 at gene and protein levels. Release of interleukins (ILs) 18 and 1β was also augmented after SCI (P < 0.0.5). Hormonal therapy was most effective for targeting mRNA activity at T6 segment. Treatment with either melatonin or E2 caused a decrease in the protein activity of NLRP3 inflammasome at all segments (P < 0.0.5), except for T6 that NLRP3 protein had no response to melatonin. IL‐1β showed decreased activity in response to hormonal therapy at all segments, whilst IL‐18 protein had no change at T1 segment. It is understood that although no alteration in the activity of NLRP3 was found for SCI at different segments, the response to hormonal therapy was influenced by segment. Significance of the study From our results, the NLRP3 inflammasome activity is not influenced by segment, but there are differences in the effect of hormonal therapy on inflammasome activity at different segments in response to melatonin or E2. These findings also provide the beneficial effects of melatonin or E2 on inflammation caused by spinal cord injury in different thoracic segments. Finally, these data can have therapeutic importance for hormone therapy of spinal cord injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.