This study examines the post-ingestive fate of two host-plant derived small-molecule phenolics (the acetophenones piceol and pungenol) that have previously been shown to be toxic to the outbreaking forest pest, spruce budworm (Choristoneura fumiferana). We test first whether these compounds are transformed during passage through the midgut, and second whether the budworm upregulates activity of the detoxification enzyme glutathione-s-transferase (GST) in response to feeding on these compounds. Insects were reared on either foliage or artificial diet to the fourth instar, when they were transferred individually to one of two treatment diets, either control or phenolic-laced, for approximately 10 days, after which midguts were dissected out and used for Bradford soluble protein and GST enzyme activity analysis. Frass was collected and subjected to HPLC-DAD-MS. HPLC showed that the acetophenones do not autoxidize under midgut pH conditions, but that glucose- and glutathione-conjugates are present in the frass of insects fed the phenolic-laced diet. GST enzyme activity increases in insects fed the phenolic-laced diet, in both neutral pH and alkaline assays. These data show that the spruce budwom exhibits counter-adaptations to plant phenolics similar to those seen in angiosperm feeders, upregulating an important detoxifying enzyme (GST) and partially conjugating these acetophenones prior to elimination, but that these counter-measures are not totally effective at mitigating toxic effects of the ingested compounds in the context of our artifical-diet based laboratory experiment.
This study examines the post-ingestive fate of two host-plant derived small-molecule phenolics (the acetophenones piceol and pungenol) that have previously been shown to be toxic to the outbreaking forest pest, spruce budworm (
Choristoneura fumiferana
). We test first whether these compounds are transformed during passage through the midgut, and second whether the budworm upregulates activity of the detoxification enzyme glutathione-s-transferase (GST) in response to feeding on these compounds. Insects were reared on either foliage or artificial diet to the fourth instar, when they were transferred individually to one of two treatment diets, either control or phenolic-laced, for approximately 10 days, after which midguts were dissected out and used for Bradford soluble protein and GST enzyme activity analysis. Frass was collected and subjected to HPLC-DAD-MS. HPLC showed that the acetophenones do not autoxidize under midgut pH conditions, but that glucose- and glutathione- conjugates are present in the frass of insects fed the phenolic-laced diet. GST enzyme activity increases in insects fed the phenolic-laced diet, in both neutral pH and alkaline assays. These data show that the spruce budwom exhibits counter-adaptations to plant phenolics similar to those seen in angiosperm feeders, upregulating an important detoxifying enzyme (GST) and partially conjugating these acetophenones prior to elimination, but that these counter-measures are not totally effective at mitigating toxic effects of the ingested compounds in the context of our artifical-diet based laboratory experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.