Gliomas are primary brain tumors with poor prognosis that exhibit frequent abnormalities in phosphatidylinositol 3-kinase (PI3 kinase) signaling. We investigated the molecular mechanism of action of the isoform-selective class I PI3 kinase and mTOR inhibitor PI-103 in human glioma cells. The potent inhibitory effects of PI-103 on the PI3 kinase pathway were quantified. PI-103 and the mTOR inhibitor rapamycin both inhibited ribosomal protein S6 phosphorylation but there were clear differences in the response of upstream components of the PI3 kinase pathway, such as phosphorylation of Thr(308)-AKT, that were inhibited by PI-103 but not rapamycin. Gene expression profiling identified altered expression of genes encoding regulators of the cell cycle and cholesterol metabolism, and genes modulated by insulin or IGF1 signaling, rapamycin treatment or nutrient starvation. PI-103 decreased expression of positive regulators of G(1)/S phase progression and increased expression of the negative cell cycle regulator p27(kip1). A reversible PI-103-mediated G(1) cell cycle arrest occurred without significant apoptosis, consistent with the altered gene expression detected. PI-103 induced vacuolation and processing of LC-3i to LC-3ii, which are features of an autophagic response. In contrast to PI-103, LY294002 and PI-387 induced apoptosis, indicative of likely off-target effects. PI-103 interacted synergistically or additively with cytotoxic agents used in the treatment of glioma, namely vincristine, BCNU and temozolomide. Compared to individual treatments, the combination of PI-103 with temozolomide significantly improved the response of U87MG human glioma xenografts. Our results support the therapeutic potential for PI3 kinase inhibitors with a PI-103-like profile as therapeutic agents for the treatment of glioma.
The precise flow characteristics that promote different atherosclerotic plaque types remain unclear. We previously developed a blood flow-modifying cuff for ApoE−/− mice that induces the development of advanced plaques with vulnerable and stable features upstream and downstream of the cuff, respectively. Herein, we sought to test the hypothesis that changes in flow magnitude promote formation of the upstream (vulnerable) plaque, whereas altered flow direction is important for development of the downstream (stable) plaque. We instrumented ApoE−/− mice (n = 7) with a cuff around the left carotid artery and imaged them with micro-CT (39.6 µm resolution) eight to nine weeks after cuff placement. Computational fluid dynamics was then performed to compute six metrics that describe different aspects of atherogenic flow in terms of wall shear stress magnitude and/or direction. In a subset of four imaged animals, we performed histology to confirm the presence of advanced plaques and measure plaque length in each segment. Relative to the control artery, the region upstream of the cuff exhibited changes in shear stress magnitude only (p < 0.05), whereas the region downstream of the cuff exhibited changes in shear stress magnitude and direction (p < 0.05). These data suggest that shear stress magnitude contributes to the formation of advanced plaques with a vulnerable phenotype, whereas variations in both magnitude and direction promote the formation of plaques with stable features.
Background and aimsWe have shown previously that low density lipoprotein (LDL) aggregated by vortexing is internalised by macrophages and oxidised by iron in lysosomes to form the advanced lipid/protein oxidation product ceroid. We have now used sphingomyelinase-aggregated LDL, a more pathophysiological form of aggregated LDL, to study lysosomal oxidation of LDL and its inhibition by antioxidants, including cysteamine (2-aminoethanethiol), which concentrates in lysosomes by several orders of magnitude. We have also investigated the effect of cysteamine on atherosclerosis in mice.MethodsLDL was incubated with sphingomyelinase, which increased its average particle diameter from 26 to 170 nm, and was then incubated for up to 7 days with human monocyte-derived macrophages. LDL receptor-deficient mice were fed a Western diet (19–22 per group) and some given cysteamine in their drinking water at a dose equivalent to that used in cystinosis patients. The extent of atherosclerosis in the aortic root and the rest of the aorta was measured.ResultsConfocal microscopy revealed lipid accumulation in lysosomes in the cultured macrophages. Large amounts of ceroid were produced, which colocalised with the lysosomal marker LAMP2. The antioxidants cysteamine, butylated hydroxytoluene, amifostine and its active metabolite WR-1065, inhibited the production of ceroid. Cysteamine at concentrations well below those expected to be present in lysosomes inhibited the oxidation of LDL by iron ions at lysosomal pH (pH 4.5) for prolonged periods. Finally, we showed that the extent of atherosclerotic lesions in the aortic root and arch of mice was significantly reduced by cysteamine.ConclusionsThese results support our hypothesis that lysosomal oxidation of LDL is important in atherosclerosis and hence antioxidant drugs that concentrate in lysosomes might provide a novel therapy for this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.