The paper deals with development and characterization of 3D sandwich composite structures reinforced with newly-designed multi-cell flat-knitted spacer fabrics in terms of compressive behaviour and Poisson’s ratio. Multi-cell spacer knitted preforms was produced on a computerized flat knitting machine. 3D composite samples with three different cross-sectional geometries were prepared via vacuum assisted resin transfer moulding method. Quasi-static compressive experiments were carried out on the prepared 3D composite samples. The Poisson’s ratio of re-entrant 3D knitted composite varied between -6 and -1, which clearly points to existence of auxetic behaviour of the samples. The re-entrant 3D composites also demonstrated the highest initial slope and area under the compression force-displacement curve than spear-head or hexagonal composite structures which refer to higher energy absorbing capacity. The Poisson’s ratio of 3D regular hexagonal knitted composites at small strain was usually 4 which gradually decreased to 1.6 as the exerted compressive strain increased. Additionally, 3D spear-head knitted composite having zero Poisson’s ratio was also developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.