Rice (Oryza sativa L.), is a staple food and cash crop in many countries and studies on geneticstructure and differentiation patterns of rice land races along with the cultivated rice, provide important data for future rice breeding. Therefore, the aims of present investigation were 1-To study the genetic diversity present withinIranian rice genotypes, 2-To study genetic relatedness of these rice genotypes, and 3-To providebarcoding of the rice genotypes based on SSR molecular markers and produce data for rice varieties authentication. In total, 201 rice samples originated from 10 geographical regions of Iran were studied in this project. All rice samples underwent fragment analysis in every 64 SSR loci and different clustering and ordination methods performed. In general four major clusters were formed. Both landraces as well as rice cultivars were distributed in different clusters due to their genetic difference. STRUCTURE analysis of the studied genotypes followed by Evanno test produced the optimal number of genetic groups K = 2. The mean Nm = 13.6, for the studied genotypes indicates that a high degree of gene flow/ancestral common alleles are present in the rice genotypes studied. Mantel test indicated a significant positive association between genetic distance and geographic distance of the rice genotype studied and presence of an overall isolation by distance (IBD) model of differentiation across the geographical regions of Iran. Overall, the significant genetic difference observed between rice landraces and rice cultivars ofthe country may be used in future hybridization and breeding of rice in the country. The landracerice genotypes may contain useful genes to be transferred to the popular rice cultivars. Moreover, SSR loci that can differentiate rice genotypes are identified and can be used in rice cultivars authentication.
Date Palm (Phoenix dactylifera L.) is one of the oldest domesticated fruit trees. For future breeding program, knowledge on genetic structure of cultivars is necessary. Therefore, the present study was performed with the following aims: 1- To provide data on genetic diversity and genetic structure of 36 date palm cultivars, 2- To provide data on the association between fruit characteristics and the genetic features of the cultivars. We used nine SSRs and EST-SSR loci for our genetic investigation. The most of SSR loci obtained have a high Gst value (0.70), and therefore have a good discrimination power for date palm cultivar differentiation task. K-Means clustering grouped date palm cultivars either in two broad clusters, or in 16 smaller genetic groups. This was supported by delta K = 2 of the STRUCTURE analysis. AMOVA produced significant genetic difference among date palm cultivars (PhiPT = 0.70, P = 0.001). New genetic differentiation parameters estimated also produced significant difference among date palm cultivars (G’st(Nei) = 0.673, P =0.001; G’st(Hed) = 0.738, P = 0.001). Test of assignment revealed that some of the cultivars have 33-66% misassignment, probably due to genetic admixture. Heatmaps of genetic versus morphological/or agronomical characters in date palm cultivars differed from each other showing the cultivars morphological changes is not merely related to their genetic content. It points toward the potential role played either by environmental conditions or local selection practice. The new findings can be utilized in future conservation and breeding of date palms in the country.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.